Aprendizaje espacial y laberinto de aguametodología y aplicaciones

  1. Vicens, Paloma
  2. Redolat Iborra, Rosa
  3. Carrasco Pozo, Carmen
Zeitschrift:
Psicothema

ISSN: 0214-9915

Datum der Publikation: 2003

Ausgabe: 15

Nummer: 4

Seiten: 539-544

Art: Artikel

Andere Publikationen in: Psicothema

Zusammenfassung

El objetivo del presente trabajo es explicar la diferente metodología del laberinto de agua y las diversas aplicaciones que de este modelo se han realizado en la investigación sobre los mecanismos neurobiológicos del aprendizaje espacial. Inicialmente se plantean los distintos procedimientos experimentales, considerando las observaciones metodológicas a tener en cuenta cuando se utiliza este paradigma conductual. Posteriormente, se analizan los hallazgos más relevantes obtenidos mediante esta prueba en distintas áreas de estudio. Se exponen datos experimentales sobre las bases neuroanatómicas y neuroquímicas del aprendizaje espacial, así como la influencia que en este aprendizaje puede tener el envejecimiento, la experiencia previa u otras variables intrínsecas y extrínsecas al sujeto. Se concluye que la conducta de los animales en el laberinto de agua es sensible a numerosos factores conductuales, farmacológicos o incluso sociales, lo que hace que sea un paradigma muy útil para la investigación sobre los procesos neurobiológicos del aprendizaje espacial.

Bibliographische Referenzen

  • Ammassari-Teule, M. y Passino, E. (1997). The dorsal hippocampus is selectively involved in the processing of spatial information even in mice with a genetic hippocampal dysfunction. Psychobiology, 25, 118- 125.
  • Astur, R.S., Taylor, L.B., Mamelak, A.N., Philpott, L. y Sutherland, R.J. (2002). Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behavioural Brain Research, 132, 77-84.
  • Barnes, C.A. (1998). Memory changes during normal aging: neurobiological correlates. En: Martínez, Jr.J.L., Kesrner, R.P. Neurobiology of learning and memory. Academic Press, California, pp. 247-287.
  • Bartus, R.T. (2000). On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Experimental Neurology, 163, 495-529.
  • Berger-Sweeney, J., Arnold, A., Gabeau, D. y Mills, J. (1995). Sex differences in learning and memory in mice: effects of sequence of testing and cholinergic blockade. Behavioral Neuroscience, 109, 859-873.
  • Bernal, M.C., Vicens, P., Carrasco, M.C. y Redolat, R. (1999). Effects of nicotine on spatial learning in C57BL mice. Behavioral Pharmacology, 10, 333-336.
  • Bierley, R.A., Rixen, G.J., Tröster, A.I. y Beatty, W.W (1986). Preserved spatial memory of rats survives 10 months without training. Behavioral & Neural Biology, 45, 223-29.
  • Bodnof, S.R., Humphreys, A.G., Lehman, J.C., Diamond, D.M., Rose, G.M. y Meaney, M.J. (1995). Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats. The Journal of Neuroscience,15, 61-69.
  • Cain, D.P. (1998). Testing the NMDA, long-term potentiation, and cholinergic hypotheses of spatial learning. Neuroscience & Biobehavioral Reviews, 22, 181-193.
  • Casadesus, G., Shukitt-Hale, B. y Joseph, J.A. (2002). Qualitative versus quantitative caloric intake: are they equivalent paths to successful aging? Neurobiology of Aging, 23, 747-769.
  • Caramanos, Z. y Shapiro, M.L. (1994). Spatial memory and N-Methyl-DAspartate receptor antagonists APV and MK-801: memory impairments depend on familiarity with the environment, drug dose, and training duration. Behavioral Neuroscience, 108, 30-43.
  • Cho, Y., Giese, K.P., Tanila, F.P., Silva, A.J. y Eichembaum, J. (1998). Unstable hippocampal spatial representations in aCaMKIIT286A point mutant and CREB knockout mice. Science, 279, 867-870.
  • Conway, E.L. (1998). Brain lesions and delayed water maze learning deficits after intracerebroventricular spermine. Brain Research, 800, 10-20.
  • Cressant, A., Muller, R.U. y Poucet, B. (1997). Failure of centrally placed objects to control the firing fields of hippocampal place cells. Journal of Neuroscience, 17, 2.531-2.542.
  • D’Hooge, R. y de Deyn, P.P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Research Reviews, 36, 60-90.
  • Devan, B.D., Goad, E.H. y Petri, H.L. (1996). Dissociation of hippocampal and striatal contributions to spatial navigation in the water maze. Neurobiology of Learning & Memory, 66, 305-323.
  • Eichenbaum, H. (1999). The hippocampus and mechanisms of declarative memory. Behavioral Brain Research, 103, 123-133.
  • Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M. y Tanila H. (1999). The hippocampus, memory and place cells: is it spatial memory or memory space? Neuron, 23, 209-226.
  • Foster, T.C. (1999). Involvement of hippocampal synaptic plasticity in age-related memory decline. Brain Research Reviews, 30, 236-249.
  • Gallagher, M., Bizon, J.L., Hoyt, E. C., Helm, K.A. y Lund, P.K. (2003). Effects of aging on the hippocampal formations in a naturally occurring animal model of mild cognitive impairment. Experimental Gerintology, 38, 71-77.
  • Gallagher, M., Burwell, R. y Burchinal, M. (1993). Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze. Behavioral Neuroscience, 107, 618-626.
  • Gerlai, R. (2001). Behavioral tests of hippocampal function: simple paradigms complex problems. Behavioral Brain Research, 125, 269-277.
  • Granon, S. y Poucet, B. (1995). Medial prefrontal lesions in the rat and spatial navigation: evidence for impaired planning. Behavioral Neuroscience, 109, 474-484.
  • Hodges, H. (1996). Maze procedures: the radial-arm and the water maze compared. Cognitive Brain Research, 3, 167-181.
  • Hodges, H., Sowinski, P., Sinden, J.D., Netto, C.A. y Fletcher, A. (1995). The selective 5-HT3 receptor antagonist WAY100289, enhances spatial memory in rats with ibotenate lesions of the forebrain cholinergic projection system. Psychopharmacology, 117, 318-332.
  • Kessels, R.P.C., de Haan, E.H.F., Kappele, L.J. y Postma, A. (2001). Varieties of human spatial memory: a meta-analysis on the effects of hippocampal lesions. Brain Research Reviews, 35, 295-303.
  • Lamberty, Y. y Gower, A.J. (1991). Cholinergic modulation of spatial learning in mice in a Morris-type water maze. Archives Internationales de Pharmacodynamie et de Therapie, 309, 5 19.
  • Lamberty, Y. y Gower, A.J. (1996). Arm width and brightness modulation of spontaneous behavior of two strains of mice tested in the elevated plus-maze. Physiology & Behavior, 59, 439-444.
  • McNamara, R.K. y Skelton, R.W. (1993). The neuropharmacological and neurochemical basis of place learning in the Morris water maze. Brain Research Reviews, 18, 33-49.
  • McNaughton, B.L., Leonard, B. y Chen, L.L. (1989). Cortical-hippocam- pal interactions and cognitive mapping: A hypotheses based on reintegration of the parietal and inferotemporal pathways for visual processing. Psychobiology, 17, 236-246.
  • Moffat, S.D., Zonderman, A.B. y Resnick, S.M. (2001). Age differences in spatial memory in a virtual environments navigation task. Neurobiology of Aging, 22, 787-796.
  • Moffat, S.D., Hampson, E. y Hatzipantelis, M. (1998). Navigation in a virtual maze: sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19, 73-87.
  • Morris, R.G.M. (1984). Development of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11, 47-60.
  • Myhrer, T. (2003). Neurotransmitter system involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Research Reviews, 41, 268-287.
  • O’Keefe, J. y Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely moving rat. Brain Research, 34, 171-175.
  • O’Keefe, J. y Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon.
  • Perrot-Sinal, T.S., Kostenuik, M.A. Ossenkopp, K.P. y Kavaliers, M. (1996). Sex differences in performance in the Morris water maze and the effects of initial nonstationary hidden platform training. Behavioral Neuroscience, 110, 1.309-1.320.
  • Pitsikas, N., Biagini, L. y Algeri, S. (1991). Previous experience facilitates preservation of spatial memory in the senescent rat. Physiology & Behavior, 49, 823-825.
  • Ploeger, G.E., Spruijt, B.M. y Cools, A.R. (1994). Spatial localisation in the Morris water maze in rats: Acquisition is affected by intra-accumbens injections of the dopaminergic antagonist haloperidol. Behavioral Neuroscience, 108, 927-934.
  • Prados, J. y Trobalon, J.B. (1998). Locating an invisible goal in a water maze requires at least two landmarks. Psychobiology, 26, 42-48.
  • Riekkinen, M. y Riekkinen, P. (1997). Nicotine and D-cycloserine enhance acquisition of water maze spatial navigation in aged rats. NeuroReport, 8, 699-703.
  • Sandi, C., Loscertales, M. y Guaza, C. (1997). Experience-dependent facilitating effect of corticosterone on spatial memory formation in the water maze. European Journal of Neuroscience, 9, 637-642.
  • Santín, L.J., Rubio, S., Begega, A., Miranda, R. y Arias, J.L. (2000). Aprendizaje espacial e hipocampo. Revista de Neurología, 31, 455- 462.
  • Santín, L.J., Aguirre, J.A., Rubio, S., Begega, A., Miranda, R. y Arias, J.L. (2001). Spatial memory and c-fos expression in supramammillary nucleus, anterior cingulate gyrus, and enthorinal cortex. Psicothema, 13, 214-221.
  • Shapiro, M. (2001). Plasticity, hippocampal place cells, and cognitive maps. Archives of Neurology, 58, 874-881.
  • Smith, C. y Rose, G.M. (1996). Evidence for a paradoxical sleep window for place learning in the Morris water maze. Physiology & Behavior, 59, 93-97.
  • Smith, M.A. (1996). Hippocampal vulnerability to stress and aging: possible role of neurotrophic factors. Behavioral Brain Research, 78, 25-36.
  • Tanila, H., Shapiro, M., Gallagher, M. y Eichenbaum, H. (1997). Brain aging: changes in the nature of information coding by the hippocampus. The Journal of Neuroscience, 17, 5.155-5.166.
  • Thinus-Blanc, C., Save, E., Rossi-Arnaud, C., Tozzi, A. y Ammassari-Teule, M. (1996). The differences shown by C57BL/6 and DBA/2 inbred mice in detecting spatial novelty are subserved by a different hippocampal and parietal cortex interplay. Behavioral Brain Research, 80, 33-40.
  • Van Praag, H., Kempermann, G. y Gage, F.H. (2000). Neural consequences of environmental enrichment. Nature Neuroscience Reviews, 1, 191-198.
  • Vicens, P., Bernal, M.C., Carrasco, M.C. y Redolat, R. (1999). Previous training in the water maze: Differential effects in NMRI and C57BL mice. Physiology and Behavior, 67, 197-203.
  • Vicens, P., Redolat, R. y Carrasco, M.C. (2002). Effects of early spatial training on water maze performance: A longitudinal study in mice. Experimental Gerontology, 37, 575-581.
  • Wang, R.F. y Spelke, E. (2002). Human spatial representation: insights from animals. Trends in Cognitive Neuroscience, 6, 376-382.
  • Whishaw, I.Q. y Tomie, J.A. (1996). Of mice and mazes: Similarities between mice and rats on dry land but not water mazes. Physiology & Behavior, 60, 1.191-1.197.
  • Wongwitdecha, N. y Marsden, C.A. (1996). Effects of social isolation rearing on learning in the Morris water maze. Brain Research, 715, 119- 124.