Big data in multiagent systemsmarket design solutions

  1. SANTOS BARTOLOMÉ, JUAN LUIS
Dirigida por:
  1. Tomás Mancha Navarro Director/a
  2. Vicente Esteve Codirector

Universidad de defensa: Universidad de Alcalá

Fecha de defensa: 12 de enero de 2017

Tribunal:
  1. Xosé Carlos Arias Moreira Presidente/a
  2. Federico Pablo Martí Secretario/a
  3. Dorotea de Diego Álvarez Vocal

Tipo: Tesis

Teseo: 535155 DIALNET lock_openTESEO editor

Resumen

El objetivo principal de esta Tesis es presentar un conjunto de novedosos y diferentes métodos en los que los sistemas multiagente pueden jugar un papel clave en predicciones y modelos económicos en un amplio conjunto de contextos. La hipótesis principal es que los sistemas multiagente permiten la creación de modelos macroeconómicos con microfundamentos reales que son capaces de representar la economía en los diferentes niveles de acuerdo con diferentes propósitos y necesidades. La investigación se estructura en seis capítulos. El Capítulo 1 es una introducción teórica al resto de los capítulos que presentan aplicaciones empíricas. En él se compara los sistemas multiagente con dos alternativas: los modelos de equilibrio general computable y la econometría espacial. El resto de los capítulos son intencionadamente diferentes en sus objetivos y sus contenidos. Estas cinco aplicaciones incorporan diferentes tipos de agentes: incluyen individuos (2, 5, 6), familias (2, 5), empresas (3, 5, 6), establecimientos (5), instituciones financieras (6) y usuarios (4). En el ámbito espacial, la desagregación espacial es deliberadamente diferente en cada aplicación: El capítulo 4 no incluye el espacio, El capítulo 6 es una aplicación para la zona euro en su conjunto y en el capítulo 3 se toma España en su conjunto. Los capítulos 2 y 5 exploran las dos de las principales posibilidades para la incorporación del espacio en los sistemas multiagente: el capítulo 2 incluye las regiones NUTS 3 de la Unión Europea y en el capítulo 5 se geolocalizan los agentes. En el capítulo 2 se desarrolla un sistema multiagente que incluye a todos los individuos de la Unión Europea. Con este sistema podemos predecir la población a escala regional para toda la Unión Europea y cómo distintos niveles de crecimiento económico repercuten asimismo sobre el empleo. En el capítulo 3 se presenta un modelo de simulación con los principales puntos de vista de la teoría de negocios para estudiar el crecimiento empresarial y la demografía empresarial en un modelo evolutivo estocástico. El modelo que se presenta también muestra cómo las empresas se adaptan a los cambios en las características deseadas del producto y el efecto de la crisis sobre estas dinámicas. El capítulo 4 discute el papel clave de los incentivos en la seguridad de los sistemas de información. Trabajos anteriores realizan este estudio utilizando un enfoque de teoría de juegos, pero el capítulo muestra que un modelo basado en agentes es capaz de incluir la heterogeneidad y las interrelaciones entre los individuos, y no se centra en el equilibrio alcanzado sino en la dinámica antes de su aparición. El objetivo del capítulo 5 es el estudio de los efectos de la Ley para la Revitalización Comercial (Ley de Dinamización Comercial) que fue aprobada en la Comunidad de Madrid durante el año 2012. Por último, el objetivo del capítulo 6 es explicar los determinantes de la inflación y pronosticar la tasa de inflación en la zona euro en los próximos cinco años. Se predice una inflación para la zona euro creciente hasta 2018 con un límite cercano al 2,5% en tasa interanual siempre que no se produzcan perturbaciones externas relevantes