Modulación de la vía Glu-NO-GMPc y del aprendizaje por GMPc extracelular en cerebelo. Mecanismos moleculares implicados. Alteraciones en modelos animales de hiperamonemia y encefalopatía hepática
- Vicente Felipo Orts Director/a
- Juan Viña Ribes Director
- Marta Llansola Gil Director/a
Universidad de defensa: Universitat de València
Fecha de defensa: 17 de julio de 2014
- Magdalena Torres Molina Presidente/a
- Carmina Montoliu Félix Secretaria
- Slaven Erceg Vocal
Tipo: Tesis
Resumen
En modelos animales de hiperamonemia y encefalopatía hepática (EH) está disminuida la capacidad de aprendizaje de un test de discriminación condicionada en el laberinto en Y. La infusión crónica intracerebral de GMPc mediante bombas osmóticas restaura la capacidad de aprendizaje en el laberinto en Y en ratas con hiperamonemia crónica. El mecanismo por el que el GMPc extracelular modula la capacidad de aprendizaje no se conoce. La vía glutamato (Glu)-óxido nítrico (NO)-GMPc modula el aprendizaje en el laberinto en Y. La función de esta vía está alterada en modelos animales de hiperamonemia y EH, conduciendo a una disminución de la capacidad de aprendizaje en el laberinto en Y. Puesto que la adición de GMPc restaura la capacidad de aprendizaje de esta tarea, es posible que el GMPc añadido restaure la función de la vía Glu-NO-GMPc en cerebelo y de esta forma restaure la capacidad de aprendizaje. El objetivo general fue estudiar si el GMPc extracelular modula la función de la vía glutamato-óxido nítrico (NO)-GMPc en cerebelo in vivo, analizándolo por microdiálisis. También se utilizaron cortes de cerebelo ex vivo de ratas control y con hiperamonemia crónica para analizar en detalle los mecanismos de modulación de la vía por el GMPc extracelular. Los resultados obtenidos muestran que el tratamiento crónico intracerebral con GMPc extracelular restaura la actividad motora en ratas hiperamonémicas y esto podría ser consecuencia de la disminución de la neuroinflamación. Restaura la coordinación motora porque normaliza los niveles de GABA extracelular en cerebelo. Recupera (i) la memoria de referencia y el índice de aprendizaje pero no la memoria de trabajo en el laberinto radial y (ii) la capacidad de aprendizaje espacial en el test del laberinto acuático de Morris. A esta recuperación podrían contribuir la normalización de los niveles de GMPc y la reducción de la neuroinflamación en hipocampo por el GMPc extracelular. Existe un rango de concentración de GMPc extracelular para el que la función de la vía glutamato-NO-GMPc es óptima. Para concentraciones menores o mayores la función de la vía es menor. En ratas hiperamonémicas, la adición de concentraciones bajas de GMPc extracelular induce un mecanismo que activa la vía mientras que concentraciones altas la inhiben. La adición de GMPc extracelular induce los mecanismos de activación o de inhibición de la vía dependiendo de los niveles de GMPc extracelular alcanzados, la activan si están por debajo de la concentración óptima y la inhiben si están por encima. Para profundizar en los mecanismos de regulación de la vía Glu-No-GMPc por GMPc extracelular, utilizamos cortes de cerebelo. La adición de GMPc extracelular recupera la función de la vía en hiperamonemia (i) disminuyendo la actividad de la CaMKII y (ii) aumentado la actividad de la NOS. En cortes de ratas control la adición de GMPc extracelular disminuye la función de la vía aumentando (i) la actividad de la CaMKII y (ii) la fosforilación de la NOS en la Ser847, disminuyendo así su actividad. Estos efectos del GMPc extracelular sobre la NOS podrían ser mediados por inhibición de una ecto ó exo proteín-quinasa A (PKA) en cerebelo. El GMPc extracelular disminuye la fosforilación de una proteína de membrana de Mr ?40 KDa. Ésta podría ser la molécula que media los efectos del GMPc extracelular sobre la señalización intracelular en la vía glutamato-NO-GMPc.