Identificación de moduladores del apoptosoma mediante química combinatoria.

  1. Malet Engra, Gema
Zuzendaria:
  1. Enrique Pérez Payá Zuzendaria

Defentsa unibertsitatea: Universitat de València

Fecha de defensa: 2006(e)ko urria-(a)k 30

Epaimahaia:
  1. Concepción Abad Mazarío Presidentea
  2. L. Anel Idazkaria
  3. Ángel García Martín Kidea
  4. Oriol Bachs Valldeneu Kidea
  5. Angel Messeguer Peypoch Kidea

Mota: Tesia

Teseo: 126448 DIALNET lock_openTDX editor

Laburpena

Protein-protein interactions represent points of chemical intervention for therapeutic gain in the biological processes associated with disease. Apoptosis is an interesting biological process because its importance in a wide variety of biological systems. Inappropriate apoptosis is involved in many human pathologies, including neurodegenerative diseases such as Alzheimer's and Huntington's, ischaemia, autoimmune disorders and several forms of cancer. Diverse apoptotic stimuli, including activation of cell surface death receptors, anticancer agents, irradiation, lack of survival factors, and ischemia induce signaling cascades that all activate a family of cysteine aspartyl proteases called caspases. It is these proteases that execute the apoptotic process. Effector caspases are responsible for the disassembly of cellular components while initiator caspases are responsible for activation of the effector caspases. Because of the critical consequences of apoptosis malfunctioning, the activation of caspases is scrupulously controlled. Some apoptotic signals activate the mitochondria-mediated or intrinsic pathway that utilizes caspase-9 as its initiator. Caspase-9 activation is triggered by the release to the cytosol of proapoptotic proteins from the mitochondrial inter-membrane space, in particular cytochrome c. The formation of the macromolecular complex named apoptosome is a key event in this pathway. The apoptosome is a holoenzyme multiprotein complex formed by cytochrome c-activated Apaf-1 (apoptotic protease-activating factor), dATP and procaspase-9. In this macromolecular complex apoptosome-associated caspase-9 is activated and then, in turn, activate effector caspases. To identify molecules that could ameliorate disease-associated apoptosis, drug discovery efforts have initially targeted caspase activity rather than activation. Nevertheless, protein-protein interactions upstream of caspase activation can be also relevant points of intervention for the development of modulators of apoptosis pathways. In particular, recent data propose the formation of the apoptosome as an interesting target for the development of apoptotic modulators. In the absence of detailed structural information, the conventional methods used for the identification of modulators of the apoptosome have been based in indirect measurements of the cytochrome c- and dATP-induced activation of caspase-3-like activity on defined cytosolic extracts. Using this methodology Lademann et al. have identified inhibitors of the apoptosome through the screening of small molecules using cytosolic extracts of selected cells. We have carried out a discovery program employing an in vitro reconstituted active apoptosome assembled from its recombinant constituent proteins. Here we describe the identification of compounds that inhibit the apoptosome-mediated activation of procaspase-9 from the screening of a diversity-oriented chemical library of N-alkylglycines. The active compounds rescued from the library were chemically optimized to obtain molecules that bind to both recombinant and human endogenous Apaf-1 and decrease the apoptotic phenotype in mitochondrial-mediated models of cellular apoptosis.