Uso de la comprensión lectora para la construcción de un modelo predictivo del éxito de estudiantes de 4º de Primaria cuando resuelven problemas verbales en un sistema inteligente

  1. Maria T. Sanz 1
  2. José Antonio González-Calero 2
  3. David Arnau 1
  4. Miguel Arevalillo-Herráez 1
  1. 1 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

  2. 2 Universidad de Castilla-La Mancha
    info

    Universidad de Castilla-La Mancha

    Ciudad Real, España

    ROR https://ror.org/05r78ng12

Journal:
Revista de educación

ISSN: 0034-8082

Year of publication: 2019

Issue Title: Evaluación de la Comprensión Lectora

Issue: 384

Pages: 41-69

Type: Article

More publications in: Revista de educación

Abstract

This work presents a dynamic mathematical model designed to predict fourth-grade primary students’ (9-10 years-old) achievement in the arithmetic solving of word problems. The work is organized into two parts. In the first part, we analyzed the variables that will be eventually included into the model, the relationships between them and the effect on the predicted outcome variable. The model takes into consideration variables related to subjects’ features: prior proficiency in solving word problems, level of reading comprehension, and the ability to solve reasoning problems through figurative and abstract visual stimuli (also called fluid intelligence). Additionally, the model employs a variable that describes the task difficulty using the semantic category of the statements as a criterion of complexity. Sixty-four fourth-grade students took part in the experiment. For each student data were gathered by using three different instruments: a PIRLS reading comprehension test, the matrix subtest from the Kaufman test, and an intelligent tutorial system, which was used by participants to solve 26 word problems. All variables showed a strong statistical correlation with the dependent variable (the students’ achievement in word problems), except for fluid intelligence. The presented model reveals that reading comprehension has a significant relevance when it comes to predicting primary students’ performance in word problems. In addition, this model offers better behaviour in comparison to similar alternatives presented in the literature.

Funding information

Esta investigación ha contado con el apoyo de la Conselleria d’Educació, Investigació, Cultura i Esport a través del proyecto GVPROMETEO2016-143, del Ministerio de Educación a través de los proyectos EDU2017-84377-R y TIN2014-59641-C2-1-P

Funders

  • Ministerio de Educación
    • EDU2017-84377-R
    • TIN2014-59641-C2-1-P
  • Conselleria d’Educació, Investigació, Cultura i Esport Spain
    • GVPROMETEO2016-143

Bibliographic References

  • Arnau, D., Arevalillo-Herráez, M., & González-Calero, J. A. (2014). Emulating Human Supervision in an Intelligent Tutoring System for Arithmetical Problem Solving. IEEE Transactions on Learning Technologies, 7(2), 155-164. doi:10.1109/TLT.2014.2307306.
  • Bañeres, D., & Serra, M. (2018). Predictive analytics: Another vision of the learning process. In S. Caballé & J. Conesa (Eds.), Software Data Engineering for Network eLearning Environments: Analytics and Awareness Learning Services (pp. 1–25). Cham: Springer International Publishing. doi:10.1007/978-3- 319-68318-8_1
  • Bogolyubov, A. N. (1972). A Combined Analytic and Synthetic Method of Solving Arithmetic Problems in Elementary School. In J. Kilpatrick & I. Wirszup (Eds.), Soviet Studies in the Psychology of Learning and Teaching Mathematics (Vol. 6, pp. 61–94). Stanford, CA: School Mathematics Study Group Stanford University and Survey of Recent East Europe Mathematical Literature.
  • Boonen, A. J. H., van Wesel, F., Jolles, J., & van der Schoot, M. (2014). The role of visual representation type, spatial ability, and reading comprehension in word problem solving: An item-level analysis in elementary school children. International Journal of Educational Research, 68(4), 15-26. doi: 10.1016/j.ijer.2014.08.001
  • Briars, D. J., & Larkin, J. H. (1984). An Integrated Model of Skill in Solving Elementary Word Problems. Cognition and Instruction, 1(3), 245-296.
  • Carpenter, T. P., & Moser, J. M. (1984). The Acquisition of Addition and Subtraction Concepts in Grades One through Three. Journal for Research in Mathematics Education, 15(3), 179-202.
  • Castro, E., Castro, E., Rico, L., Gutiérrez, J., Tortosa, A., Segovia, I., ... Fernández, F. (1997). Problemas aritméticos compuestos de dos relaciones. In L. Rico & M. Sierra (Eds.), Actas del Primer Simposio de la Sociedad Española de Investigación en Educación Matemática (pp. 63–76). Zamora: SEIEM.
  • Cattell, R. B. (1971). Abilities: Their structure, growth, and action. Boston: Houghton Mifflin.
  • Cerdán, F. (2008). Estudios sobre la Familia de Problemas Aritmético-Algebraicos. València: Servei de Publicacions de la Universitat de València.
  • Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlabaum Associates.
  • Hansen, L. B., Macizo, P., Duñabeitia, J. A., Saldaña, D., Carreiras, M., Fuentes, L. J., & Bajo, M. T. (2016). Emergent Bilingualism and Working Memory Development in School Aged Children. Language Learning, 66(S2), 51–75. doi:10.1111/lang.12170
  • Hegarty M., Mayer R. E., & Green C. E. (1992). Comprehension of arithmetic word problems: evidence from students’ eye fixations. Journal Education of Psychologist, 84, 76–84.
  • Holling, H., Bertling, J.P., & Zeuch, N. (2009). Automatic Item Generation of Probability Word Problems. Studies in Educational Evaluation, 35(3), 71-76.
  • Ivars, P., & Fernández, C. (2016). Problemas de estructura multiplicativa: Evolución de niveles de éxito y estrategias en estudiantes de 6 a 12 años. Educación Matemática, 28(1), 9-38.
  • Kalmykova, Z. I. (1975). Processes of analysis and synthesis in the solution of arithmetic problems. In J. Kilpatrick, I. Wirszup, E. G. Begle, J. W. Wilson, & M. G. Kantowski (Eds.), Soviet Studies in the Psychology of Learning and Teaching Mathematics (Vol. 11, pp. 1–171). Stanford, CA: School Mathematics Study Group Stanford University and Survey of Recent East Europe Mathematical Literature.
  • Kaufman, A., & Kaufman, N. (2000) K-Bit Test Breve de Inteligencia de Kaufman. (Agustín Cordero, Isabel Calonge, trad.). España: TEA Ediciones. (Obra original publicada en 1994).
  • Keyes, K. M., Platt, J., Kaufman, A. S., & McLaughlin, K. A. (2017). Association of Fluid Intelligence and Psychiatric Disorders in a Population-Representative Sample of US Adolescents. JAMA Psychiatry, 74(2), 179. doi:10.1001/jamapsychiatry.2016.3723
  • Koedinger, K. R., D’Mello, S., McLaughlin, E. A., Pardos, Z. A., & Rosé, C. P. (2015). Data mining and education. Wiley Interdisciplinary Reviews: Cognitive Science, 6(4), 333–353. doi:10.1002/wcs.1350
  • Korpershoek, H., Kuyper, H., & Van der Werf, G. (2015). The relation between students’ math and reading ability and their mathematics, physics, and chemistry examination grades in secondary education. International Journal of Science and Mathematics Education, 13, 1013-1037.
  • Leviton, A., Dammann, O., Allred, E. N., Joseph, R. M., Fichorova, R. N., O’Shea, T. M., & Kuban, K. C. K. (2018). Neonatal systemic inflammation and the risk of low scores on measures of reading and mathematics achievement at age 10 years among children born extremely preterm. International Journal of Developmental Neuroscience, 66, 45–53. doi:10.1016/J.IJDEVNEU.2018.01.001
  • MacLellan, C., Liu, R., & Koedinger, K. (2015) Accounting for Slipping and Other False Negatives in Logistic Models of Student Learning. In. 8th International Conference on Educational Data Mining (EDM).Madrid, Spain: International Educational Data Mining Society.
  • Ministerio de Educación, Cultura y Deporte (2013). PIRLS - TIMSS 2011.Estudio Internacional de progreso en comprensión lectora, matemáticas y ciencias. IEA. INFORME ESPAÑOL: Ítems liberados. Madrid, España: Instituto Nacional de Evaluación educativa. Recuperado de http://evaluacion.educalab.es/timsspirls/tests/29
  • Mullis, I. V. S., & Martin, M. O. (Eds.). (2015). PIRLS 2016 Assessment Framework (2nd ed.). Retrieved from Boston College, TIMSS & PIRLS International Study Center website: http://timssandpirls.bc.edu/pirls2016/framework.html
  • Nesher, P. (1988). Multiplicative school word problems: Theoretical approaches and empirical findings. In J. Hiebert and M. Behr (Eds.), Number concepts and operations in the middle grades (pp. 19-40), Reston, VA: NCTM.
  • Nesher, P., & Hershkovitz, S. (1994). The Role of Schemes in Two-Step Problems: Analysis and Research Findings. Educational Studies in Mathematics, 26(1), 1-23.
  • OECD (2017). PISA 2015 Results (Volume IV): Students’ Financial Literacy. Paris, France: OECD Publishing. doi:10.1787/9789264270282-en
  • Pape, S. J. (2004). Middle School Children’s Problem-Solving Behavior: A Cognitive Analysis from a Reading Comprehension Perspective. Journal for Research in Mathematics Education, 35(3), 187-219. doi:10.2307/30034912
  • Primi, R., Ferrão, M. E., & Almeida, L. S. (2010). Fluid intelligence as a predictor of learning: A longitudinal multilevel approach applied to math. Learning and Individual Differences, 20(5), 446–451. doi:10.1016/J.LINDIF.2010.05.001
  • Puig, L., & Cerdán, F. (1988). Problemas aritméticos escolares. Madrid: Síntesis.
  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Pædagogiske Institut.
  • Riley, M. S., Greeno, J. G., & Heller, J. L. (1983). Development of children’s problem-solving ability in arithmetic. En H. P. Ginsburg (Ed.), The development of mathematical thinking (pp. 153–196). New York: Academic Press.
  • Schneider, W. J., & McGrew, K. S. (2012). The Cattell-Horn-Carroll Model of Intelligence. In D. P. Flanagan, & P. L. Harrison (Ed.), Contemporary Intellectual Assessment: Theories, Tests and Issues (3rd ed., pp. 553-581). New York: The Guilford Press.
  • Solaz-Portolés, J. J., & Sanjosé, V. (2006). ¿Podemos predecir el rendimiento de nuestros alumnos en la resolución de problemas?. Revista de Educación, 339, 693-710
  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285.
  • Taub, G. E., Keith, T. Z., Floyd, R. G., & Mcgrew, K. S. (2008). Effects of general and broad cognitive abilities on mathematics achievement. School Psychology Quarterly, 23(2), 187–198. doi:10.1037/1045-3830.23.2.187
  • Vergnaud, G. (1982). Cognitive and Developmental Psychology and Research in Mathematics Education. For the Learning of Mathematics, 3(2), 31-41.
  • Vergnaud, G. (1991). El niño, las matemáticas y la realidad: problemas de la enseñanza de las matemáticas en la escuela primaria. México, D.F., México: Trillas.
  • Vilenius-Tuohimaa, P. M., Aunola, K., & Nurmi, J.E. (2008) The Association between Mathematical Word Problems and Reading Comprehension. Educational Psychology, 28(4), pp. 409-426.
  • Wilson, M., & De Boeck, P. (2004). Descriptive and explanatory item response models. In P. De Boeck and M. Wilson (Eds.) Explanatory item response models: A generalized linear and nonlinear approach(pp. 43-74. New York: Springer-Verlag.