Nonlinear Partial Differential Equations
EDPNOL
Universitat d'Alacant
Alicante, EspañaPublications in collaboration with researchers from Universitat d'Alacant (11)
2015
-
Optimal matching problems with costs given by Finsler distances
Communications on Pure and Applied Analysis, Vol. 14, Núm. 1, pp. 229-244
2014
-
An optimal matching problem for the Euclidean distance
SIAM Journal on Mathematical Analysis, Vol. 46, Núm. 1, pp. 233-255
-
Functions of least gradient and 1-harmonic functions
Indiana University Mathematics Journal, Vol. 63, Núm. 4, pp. 1067-1084
-
Mass transport problems for the Euclidean distance obtained as limits of p-Laplacian type problems with obstacles
Journal of Differential Equations, Vol. 256, Núm. 9, pp. 3208-3244
-
Mass transport problems obtained as limits of p-Laplacian type problems with spatial dependence
Advances in Nonlinear Analysis, Vol. 3, Núm. 3, pp. 133-140
-
On optimal matching measures for matching problems related to the euclidean distance
Mathematica Bohemica, Vol. 139, Núm. 4, pp. 553-566
2013
-
Behaviour of p-Laplacian problems with Neumann boundary conditions when p goes to 1
Communications on Pure and Applied Analysis, Vol. 12, Núm. 1, pp. 253-267
2012
-
On the behaviour of solutions to the Dirichlet problem for the p(x)-Laplacian when p(x) goes to 1 in a subdomain
Differential and Integral Equations, Vol. 25, Núm. 1-2, pp. 53-74
-
On the best Lipschitz extension problem for a discrete distance and the discrete ∞-Laplacian
Journal des Mathematiques Pures et Appliquees, Vol. 97, Núm. 2, pp. 98-119
2011
-
Comportamiento de las soluciones del problema de Neumann para el p-laplaciano cuando p tiende a 1
XXII CEDYA Congreso de Ecuaciones Diferenciales y Aplicaciones: XII CMA Congreso de Matemática Aplicada : Palma de Mallorca, 5-9 septiembre de 2011: programa y resúmenes
2010
-
Anisotropic p, q-Laplacian equations when p goes to 1
Nonlinear Analysis, Theory, Methods and Applications, Vol. 73, Núm. 11, pp. 3546-3560