Nonlinear Partial Differential Equations
EDPNOL
Université de Toulouse
Tolosa, FranciaPublications in collaboration with researchers from Université de Toulouse (12)
2018
-
Classification of extinction profiles for a one-dimensional diffusive Hamilton-Jacobi equation with critical absorption
Proceedings of the Royal Society of Edinburgh Section A: Mathematics, Vol. 148, Núm. 3, pp. 559-574
-
Extinction for a singular diffusion equation with strong gradient absorption revisited
Advanced Nonlinear Studies, Vol. 18, Núm. 4, pp. 785-797
-
Optimal extinction rates for the fast diffusion equation with strong absorption
Bulletin of the London Mathematical Society, Vol. 50, Núm. 4, pp. 635-648
2017
-
Instantaneous shrinking and single point extinction for viscous Hamilton–Jacobi equations with fast diffusion
Mathematische Annalen, Vol. 368, Núm. 1-2, pp. 65-109
-
Large Time Behavior for a Quasilinear Diffusion Equation with Critical Gradient Absorption
Journal of Dynamics and Differential Equations, Vol. 29, Núm. 3, pp. 817-832
-
Self-similar extinction for a diffusive Hamilton–Jacobi equation with critical absorption
Calculus of Variations and Partial Differential Equations, Vol. 56, Núm. 3
2016
-
Large time behavior for the fast diffusion equation with critical absorption
Journal of Differential Equations, Vol. 260, Núm. 11, pp. 8000-8024
2014
-
Asymptotic behavior for a singular diffusion equation with gradient absorption
Journal of Differential Equations, Vol. 256, Núm. 8, pp. 2739-2777
2013
-
Eternal solutions to a singular diffusion equation with critical gradient absorption
Nonlinearity, Vol. 26, Núm. 12, pp. 3169-3195
-
Existence and uniqueness of very singular solutions for a fast diffusion equation with gradient absorption
Journal of the London Mathematical Society, Vol. 87, Núm. 2, pp. 509-529
2012
-
Positivity, decay, and extinction for a singular diffusion equation with gradient absorption
Journal of Functional Analysis, Vol. 262, Núm. 7, pp. 3186-3239
2011
-
Asymptotic behaviour of a nonlinear parabolic equation with gradient absorption and critical exponent
Interfaces and Free Boundaries, Vol. 13, Núm. 2, pp. 271-295