Publications by the researcher in collaboration with Julio Daniel Rossi (35)

2019

  1. A Nonlocal Mean Curvature Flow

    Frontiers in Mathematics (Birkhauser Verlag AG), pp. 107-118

  2. Nonlocal Cheeger and Calibrable Sets

    Frontiers in Mathematics (Birkhauser Verlag AG), pp. 53-80

  3. Nonlocal Heat Content

    Frontiers in Mathematics (Birkhauser Verlag AG), pp. 81-106

  4. Nonlocal Isoperimetric Inequality

    Frontiers in Mathematics (Birkhauser Verlag AG), pp. 19-28

  5. Nonlocal Minimal Surfaces and Nonlocal Curvature

    Frontiers in Mathematics (Birkhauser Verlag AG), pp. 29-44

  6. Nonlocal Operators

    Frontiers in Mathematics (Birkhauser Verlag AG), pp. 45-52

  7. Nonlocal Perimeter

    Frontiers in Mathematics (Birkhauser Verlag AG), pp. 1-17

  8. Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets

    Frontiers in Mathematics (Birkhauser Verlag AG), pp. 1-118

  9. Nonlocal perimeter, curvature and minimal surfaces for measurable sets

    Journal d'Analyse Mathematique, Vol. 138, Núm. 1, pp. 235-279

  10. Preface

    Frontiers in Mathematics

2018

  1. An optimal matching problem with constraints

    Revista matemática complutense, Vol. 31, Núm. 2, pp. 407-447

  2. Optimal mass transportation for costs given by Finsler distances via p-Laplacian approximations

    Advances in Calculus of Variations, Vol. 11, Núm. 1, pp. 1-28

2017

  1. The Heat Content for Nonlocal Diffusion with Non-singular Kernels

    Advanced Nonlinear Studies, Vol. 17, Núm. 2, pp. 255-268

2016

  1. Fractional p-Laplacian evolution equations

    Journal des Mathematiques Pures et Appliquees, Vol. 105, Núm. 6, pp. 810-844

2015

  1. Optimal mass transport on metric graphs

    SIAM Journal on Optimization, Vol. 25, Núm. 3, pp. 1609-1632

  2. Optimal matching problems with costs given by Finsler distances

    Communications on Pure and Applied Analysis, Vol. 14, Núm. 1, pp. 229-244

2014

  1. An optimal matching problem for the Euclidean distance

    SIAM Journal on Mathematical Analysis, Vol. 46, Núm. 1, pp. 233-255

  2. An optimal transportation problem with a cost given by the Euclidean distance plus import/export taxes on the boundary.

    Revista matemática iberoamericana, Vol. 30, Núm. 1, pp. 277-308

  3. Functions of least gradient and 1-harmonic functions

    Indiana University Mathematics Journal, Vol. 63, Núm. 4, pp. 1067-1084

  4. Mass transport problems for the Euclidean distance obtained as limits of p-Laplacian type problems with obstacles

    Journal of Differential Equations, Vol. 256, Núm. 9, pp. 3208-3244