Serine Metabolic Networks in Plants

  1. Rosa-Téllez, Sara
  2. Casatejada-Anchel, Rubén
  3. Alcántara-Enguídanos, Andrea
  4. Torres-Moncho, Alejandro
  5. Dohgri, Maroua
  6. Martínez-Serra, Celia
  7. González-Nebauer, Sergio
  8. Arrillaga, Isabel
  9. Renau-Morata, Begoña
  10. Muñoz-Bertomeu, Jesús
  11. Ros, Roc
Book:
Progress in Botany

ISSN: 0340-4773 2197-8492

ISBN: 9783031457531 9783031457548

Year of publication: 2023

Pages: 83-102

Type: Book chapter

DOI: 10.1007/124_2023_73 GOOGLE SCHOLAR lock_openOpen access editor

Abstract

The amino acid L-serine (Ser) is indispensable for several cellular processes. In addition to forming part of proteins, Ser is required for the synthesis of other amino acids, nitrogen bases, and lipids and is a source of one-carbon units (1C) for methylation reactions. Unlike animals, plants synthesize Ser through different pathways, which has complicated the understanding of the amino acid homeostasis. Three Ser biosynthesis pathways have been described in plants: the glycolate pathway, associated with photorespiration, and two non-photorespiratory pathways, the phosphorylated and the glycerate pathway of Ser biosynthesis. In recent years, the specific contribution of each pathway to Ser homeostasis and how they are coordinated to participate in plant metabolism and development have started to be elucidated. Current knowledge on serine biosynthesis and functions in plants is reviewed here and, whenever possible, compared with current knowledge in mammals. We focus on recent advances that link Ser with other metabolic processes, such as the Ser-glycine-1C network, and nitrogen and sulfur metabolism. We also discuss the role of Ser metabolic reprogramming in the plant response to biotic and abiotic stresses and how it can be affected by climate change.

Bibliographic References

  • Aarabi F, Kusajima M, Tohge T, Konishi T, Gigolashvili T, Takamune M, Sasazaki Y, Watanabe M, Nakashita H, Fernie AR, Saito K, Takahashi H, Hubberten HM, Hoefgen R, Mayurama-Nakashita A (2016) Sulfur deficiency-induced repressor proteins optimize glucosinolate biosynthesis in plants. Sci Adv 2:e1601087. https://doi.org/10.1126/sciadv.1601087
  • Abadie C, Tcherkez G (2019) Plant sulphur metabolism is stimulated by photorespiration. Commun Biol 2:379. https://doi.org/10.1038/s42003-019-0616-y
  • Abadie C, Boex-Fontvieille ERA, Carroll AJ, Tcherkez G (2016) In vivo stoichiometry of photorespiratory metabolism. Nat Plants 2:15220. https://doi.org/10.1038/nplants.2015.220
  • Ainsworth EA, Long SP (2020) 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob Chang Biol 27:27–49. https://doi.org/10.1111/gcb.15375
  • Aires A, Mota VR, Saavedra MJ, Rosa EAS, Bennett RN (2009) The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract. J Appl Microbiol 106:2086–2095. https://doi.org/10.1111/J.1365-2672.2009.04180.X
  • Ali V, Shigeta Y, Nozaki T (2003) Molecular and structural characterization of NADPH-dependent d-glycerate dehydrogenase from the enteric parasitic protist Entamoeba histolytica. Biochem J 375:729–736. https://doi.org/10.1042/BJ20030630
  • Andrews M, Condron LM, Kemp PD et al (2020) Will rising atmospheric CO2 concentration inhibit nitrate assimilation in shoots but enhance it in roots of C3 plants? Physiol Plant 170:40–45. https://doi.org/10.1111/ppl.13096
  • Anoman AD, Flores-Tornero M, Benstein RM, Blau S, Rosa-Téllez S, Bräutigam A, Fernie AR, Muñoz-Bertomeu J, Schilasky S, Meyer AJ, Kopriva S, Segura J, Krueger S, Ros R (2019) Deficiency in the phosphorylated pathway of serine biosynthesis perturbs sulfur assimilation. Plant Physiol 180:153–170. https://doi.org/10.1104/pp.18.01549
  • Araki R, Hasumi A, Nishizawa OI, Sasaki K, Kuwahara A, Sawada Y, Totoki Y, Toyoda A, Sakaki Y, Li Y, Saito K, Ogawa T (2013) Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production. Plant Biotechnol J 11:1017–1027. https://doi.org/10.1111/PBI.12095
  • Batool S, Uslu VV, Rajab H, Ahmad N, Waadt R, Geiger D, Malagoli M, Xiang C-B, Hedrich R, Rennenberg H, Herschbach C, Hell R, Wirtz M (2018) Sulfate is incorporated into cysteine to trigger ABA production and stomatal closure. Plant Cell 30:2973–2987. https://doi.org/10.1105/tpc.18.00612
  • Bauwe H, Kolukisaoglu Ü (2003) Genetic manipulation of glycine decarboxylation. J Exp Bot 54:1523–1535. https://doi.org/10.1093/jxb/erg171
  • Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15:330–336. S1360-1385(10)00062-2 [pii]. https://doi.org/10.1016/j.tplants.2010.03.006
  • Bednarek P, Piślewska-Bednarek M, Svatoš A, Schneider B, Doubský J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106. https://doi.org/10.1126/science.1163732
  • Benstein RM, Ludewig K, Wulfert S, Wittek S, Gigolashvili T, Frerigmann H, Gierth M, Flügge UI, Krueger S (2013) Arabidopsis phosphoglycerate dehydrogenase1 of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis. Plant Cell 25:5011–5029. https://doi.org/10.1105/tpc.113.118992
  • Bloom AJ (2015) Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynth Res 123:117–128. https://doi.org/10.1007/s11120-014-0056-y
  • Bloom AJ, Burger M, Asensio JSR, Cousins AB (2010) Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328:899–903. https://doi.org/10.1126/science.1186440
  • Bloom AJ, Asensio JSR, Randall L, Rachmilevitch S, Cousins AB, Carlisle EA (2012) CO2 enrichment inhibits shoot nitrate assimilation in C3 but not C4 plants and slows growth under nitrate in C3 plants. Ecology 93:355–367. https://doi.org/10.1890/11-0485.1
  • Bloom AJ, Burger M, Kimball BA, Pinter PJ (2014) Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat. Nat Clim Chang 4:477–480. https://doi.org/10.1038/nclimate2183
  • Bloom AJ, Kasemsap P, Rubio-Asensio JS (2020) Rising atmospheric CO2 concentration inhibits nitrate assimilation in shoots but enhances it in roots of C3 plants. Physiol Plant 168:963–972. https://doi.org/10.1111/ppl.13040
  • Bohrer AS, Takahashi H (2016) Compartmentalization and regulation of sulfate assimilation pathways in plants. Int Rev Cell Mol Biol 326:1–31. https://doi.org/10.1016/bs.ircmb.2016.03.001
  • Burow M, Halkier BA (2017) How does a plant orchestrate defense in time and space? Using glucosinolates in Arabidopsis as case study. Curr Opin Plant Biol 38:142–147. https://doi.org/10.1016/j.pbi.2017.04.009
  • Busch FA, Sage RF, Farquhar GD (2018) Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway. Nat Plants 4:46–54. https://doi.org/10.1038/s41477-017-0065-x
  • Casatejada-Anchel R, Muñoz-Bertomeu J, Rosa-Téllez S, Anoman AD, Nebauer SG, Torres-Moncho A, Fernie AR, Ros R (2021) Phosphoglycerate dehydrogenase genes differentially affect Arabidopsis metabolism and development. Plant Sci 306:110863. https://doi.org/10.1016/j.plantsci.2021.110863
  • Cascales-Miñana B, Muñoz-Bertomeu J, Flores-Tornero M, Anoman AD, Pertusa J, Alaiz M, Osorio S, Fernie AR, Segura J, Ros R (2013) The phosphorylated pathway of serine biosynthesis is essential both for male gametophyte and embryo development and for root growth in Arabidopsis. Plant Cell 25:2084–2101. https://doi.org/10.1105/tpc.113.112359
  • Cheng MC, Ko K, Chang WL, Kuo W-C, Chen G-H, Lin T-P (2015) Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J 83:926–939. https://doi.org/10.1111/tpj.12940
  • Claros Cuadrado JL, Pinillos EO, Tito R, Seguil-Mirones C, Gamarra-Mendoza NN (2019) Insecticidal properties of capsaicinoids and glucosinolates extracted from Capsicum chinense and Tropaeolum tuberosum. Insects 10:132. https://doi.org/10.3390/insects10050132
  • Dellero Y, Mauve C, Jossier M, Hodges M (2021) The impact of photorespiratory glycolate oxidase activity on Arabidopsis thaliana leaf soluble amino acid pool sizes during acclimation to low atmospheric CO2 concentrations. Metabolites 11:501. https://doi.org/10.3390/metabo11080501
  • Douce R, Bourguignon J, Neuburger M, Rebeille F (2001) The glycine decarboxylase system: a fascinating complex. Trends Plant Sci 6:167–176. https://doi.org/10.1016/S1360-1385(01)01892-1
  • Ducker GS, Rabinowitz JD (2017) One-carbon metabolism in health and disease. Cell Metab 25:27–42. https://doi.org/10.1016/j.cmet.2016.08.009
  • Ehmsen JT, Ma TM, Sason H, Rosenberg D, Ogo T, Furuya S, Snyder SH, Wolosker H (2013) D-serine in glia and neurons derives from 3-phosphoglycerate dehydrogenase. J Neurosci 33:12464–12469. https://doi.org/10.1523/JNEUROSCI.4914-12.2013
  • Eisenhut M, Roell MS, Weber APM (2019) Mechanistic understanding of photorespiration paves the way to a new green revolution. New Phytol 223:1762–1769. https://doi.org/10.1111/nph.15872
  • Engel N, Ewald R, Gupta KJ, Zrenner R, Hagemann M, Bauwe H (2011) The presequence of Arabidopsis serine hydroxymethyltransferase SHM2 selectively prevents import into mesophyll mitochondria. Plant Physiol 157:1711–1720. https://doi.org/10.1104/pp.111.184564
  • Falk KL, Tokuhisa JG, Gershenzon J (2007) The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms. Plant Biol 9:573–581. https://doi.org/10.1055/S-2007-965431/ID/74
  • Fu X, Gregory LM, Weise SE, Walker BJ (2023) Integrated flux and pool size analysis in plant central metabolism reveals unique roles of glycine and serine during photorespiration. Nat Plants 9:169–178. https://doi.org/10.1038/s41477-022-01294-9
  • Geeraerts SL, Heylen E, De Keersmaecker K, Kampen KR (2021) The ins and outs of serine and glycine metabolism in cancer. Nat Metab 3:131–141. https://doi.org/10.1038/s42255-020-00329-9
  • Gigolashvili T, Engqvist M, Yatusevich R, Müller M, Flügge UI (2008) HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol 177:627–642. https://doi.org/10.1111/J.1469-8137.2007.02295.X
  • Gorelova V, Ambach L, Rébeillé F, Stove C, Van Der Straeten D (2017) Folates in plants: research advances and progress in crop biofortification. Front Chem 5:21. https://doi.org/10.3389/fchem.2017.00021
  • Greenberg DM, Ichihara A (1957) Further studies on the pathway of serine formation from carbohydrate. J Biol Chem 224:331–340. https://doi.org/10.1016/s0021-9258(18)65032-x
  • Hanson AD, Roje S (2001) One-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol 52:119–137. https://doi.org/10.1146/annurev.arplant.52.1.119
  • Höhner R, Day PM, Zimmermann SE, Lopez LS, Krämer M, Giavalisco P, Galvis VC, Armbruster U, Schöttler MA, Jahns P, Krueger S, Kunz H-H (2021) Stromal NADH supplied by phosphoglycerate dehydrogenase3 is crucial for photosynthetic performance. Plant Physiol 186:142–167. https://doi.org/10.1093/PLPHYS/KIAA117
  • Hossain MS, Persicke M, ElSayed AI, Kalinowski J, Dietz K-J (2017) Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. J Exp Bot 68:5961–5976. https://doi.org/10.1093/jxb/erx388
  • Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Nitrogen and climate change. Science 302:1512–1513. https://doi.org/10.1126/science.1091390
  • Igamberdiev AU, Kleczkowski LA (2018) The glycerate and phosphorylated pathways of serine synthesis in plants: the branches of plant glycolysis linking carbon and nitrogen metabolism. Front Plant Sci 9:318. https://doi.org/10.3389/fpls.2018.00318
  • Ishida M, Hara M, Fukino N, Kakizaki T, Morimitsu Y (2014) Glucosinolate metabolism, functionality and breeding for the improvement of brassicaceae vegetables. Breed Sci 64:48–59. https://doi.org/10.1270/jsbbs.64.48
  • Jauregui I, Aroca R, Garnica M, Zamarreño ÁM, García-Mina JM, Serret MD, Parry M, Irigoyen JJ, Aranjuelo I (2015) Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated [CO2] and temperature. Physiol Plant 155:338–354. https://doi.org/10.1111/ppl.12345
  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168. https://doi.org/10.1104/pp.104.052142
  • Karmakar S, Datta K, Molla KA, Gayen D, Das K, Sarkar SN, Datta SK (2019) Proteo-metabolomic investigation of transgenic rice unravels metabolic alterations and accumulation of novel proteins potentially involved in defence against Rhizoctonia solani. Sci Rep 91(9):10461. https://doi.org/10.1038/s41598-019-46885-3
  • Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H-J, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599. https://doi.org/10.1038/nbt1299
  • Kleczkowski LA, Givan CV (1988) Serine formation in leaves by mechanisms other than the glycolate pathway. J Plant Physiol 132:641–652. https://doi.org/10.1016/S0176-1617(88)80223-2
  • Krämer K, Kepp G, Brock J, Stutz S, Heyer AG (2022) Acclimation to elevated CO2 affects the C/N balance by reducing de novo N-assimilation. Physiol Plant 174:e13615. https://doi.org/10.1111/ppl.13615
  • Le Douce J, Maugard M, Veran J, Matos M, Jégo P, Vigneron PA, Faivre E, Toussay X, Vandenberghe M, Balbastre Y, Piquet J, Guiot E, Tran NT, Taverna M, Marinesco S, Koyanagi A, Furuya S, Gaudin-Guérif M, Goutal S, Ghettas A, Pruvost A, Bemelmans AP, Gaillard MC, Cambon K, Stimmer L, Sazdovitch V, Duyckaerts C, Knott G, Hérard AS, Delzescaux T, Hantraye P, Brouillet E, Cauli B, Oliet SHR, Panatier A, Bonvento G (2020) Impairment of glycolysis-derived L-serine production in astrocytes contributes to cognitive deficits in Alzheimer’s disease. Cell Metab 31:503–517. https://doi.org/10.1016/j.cmet.2020.02.004
  • Li M, Guo R, Jiao Y, Jin X, Zhang H, Shi L (2017) Comparison of salt tolerance in soja based on metabolomics of seedling roots. Front Plant Sci 8:1101. https://doi.org/10.3389/fpls.2017.01101
  • Liang Z, Yu C, Huang AHC (1984) Conversion of glycerate to serine in intact spinach leaf peroxisomes. Arch Biochem Biophys 233:393–401. https://doi.org/10.1016/0003-9861(84)90460-0
  • Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13:572–583. https://doi.org/10.1038/nrc3557
  • Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, Heffron G, Metallo CM, Muranen T, Sharfi H, Sasaki AT, Anastasiou D, Mullarky E, Vokes NI, Sasaki M, Beroukhim R, Stephanopoulos G, Ligon AH, Meyerson M, Richardson AL, Chin L, Wagner G, Asara JM, Brugge JS, Cantley LC, Heiden MGV (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43:869–874. https://doi.org/10.1038/ng.890
  • Medek DE, Schwartz J, Myers SS (2017) Estimated effects of future atmospheric CO2 concentrations on protein intake and the risk of protein deficiency by country and region. Environ Health Perspect 125:87002. https://doi.org/10.1289/EHP41
  • Michard E, Lima PT, Borges F, Silva AC, Portes MT, Carvalho JE, Gilliham M, Liu LH, Obermeyer G, Feijó JA (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332:434–437. https://doi.org/10.1126/science.1201101
  • Modde K, Timm S, Florian A, Michl K, Fernie AR, Bauwe H (2017) High serine:glyoxylate aminotransferase activity lowers leaf daytime serine levels, inducing the phosphoserine pathway in Arabidopsis. J Exp Bot 68:643–656. https://doi.org/10.1093/jxb/erw467
  • Mohanta TK, Khan AL, Hashem A, Abd-Allah EF, Yadav D, Al-Harrasi A (2019) Genomic and evolutionary aspects of chloroplast tRNA in monocot plants. BMC Plant Biol 19:39. https://doi.org/10.1186/s12870-018-1625-6
  • Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 97:4926–4931. https://doi.org/10.1073/pnas.97.9.4926
  • Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey ADB, Bloom AJ, Carlisle E, Dietterich LH, Fitzgerald G, Hasegawa T, Holbrook NM, Nelson RL, Ottman MJ, Raboy V, Sakai H, Sartor KA, Schwartz J, Seneweera S, Tausz M, Usui Y (2014) Increasing CO2 threatens human nutrition. Nature 510:139–142. https://doi.org/10.1038/nature13179
  • Newman AC, Maddocks ODK (2017) Serine and functional metabolites in cancer. Trends Cell Biol 27:645–657. https://doi.org/10.1016/J.TCB.2017.05.001
  • Noguchi K, Watanabe CK, Terashima I (2015) Effects of elevated atmospheric CO2 on primary metabolite levels in Arabidopsis thaliana Col-0 leaves: an examination of metabolome data. Plant Cell Physiol 56:2069–2078. https://doi.org/10.1093/PCP/PCV125
  • Nogués I, Sekula B, Angelaccio S, Grzechowiak M, Tramonti A, Contestabile R, Ruszkowski M (2022) Arabidopsis thaliana serine hydroxymethyltransferases: functions, structures, and perspectives. Plant Physiol Biochem 187:37–49. https://doi.org/10.1016/j.plaphy.2022.07.025
  • Nunes-Nesi A, Florian A, Howden A, Jahnke K, Timm S, Bauwe H, Sweetlove L, Fernie AR (2014) Is there a metabolic requirement for photorespiratory enzyme activities in heterotrophic tissues? Mol Plant 7:248–251. https://doi.org/10.1093/mp/sst111
  • Obata T, Witt S, Lisec J, Palacios-Rojas N, Florez-Sarasa I, Yousfi S, Araus JL, Cairns JE, Fernie AR (2015) Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol 169:2665–2683. https://doi.org/10.1104/pp.15.01164
  • Pacold ME, Brimacombe KR, Chan SH, Rohde JM, Lewis CA, Swier LJYM, Possemato R, Chen WW, Sullivan LB, Fiske BP, Cho S, Freinkman E, Birsoy K, Abu-Remaileh M, Shaul YD, Liu CM, Zhou M, Koh MJ, Chung H, Davidson SM, Luengo A, Wang AQ, Xu X, Yasgar A, Liu L, Rai G, Westover KD, Heiden MGV, Shen M, Gray NS, Boxer MB, Sabatini DM (2016) A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat Chem Biol 12:452–458. https://doi.org/10.1038/nchembio.2070
  • Peterhansel C, Horst I, Niessen M, Blume C, Kebeish R, Kurkcuoglu S, Kreuzaler F (2010) Photorespiration. Arab Book 8:e0130. https://doi.org/10.1199/tab.0130
  • Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, Chen WW, Barrett FG, Stransky N, Tsun ZY, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476:346–350. https://doi.org/10.1038/nature10350
  • Rachmilevitch S, Cousins AB, Bloom AJ (2004) Nitrate assimilation in plant shoots depends on photorespiration. Proc Natl Acad Sci 101:11506–11510. https://doi.org/10.1073/pnas.0404388101
  • Randall DD, Tolbert NE (1971) 3-phosphoglycerate phosphatase in plants. J Biol Chem 246:5510–5517. https://doi.org/10.1016/S0021-9258(18)61935-0
  • Rebeille F, Neuburger M, Douce R (1994) Interaction between glycine decarboxylase, serine hydroxymethyltransferase and tetrahydrofolate polyglutamates in pea leaf mitochondria. Biochem J 302:223–228. https://doi.org/10.1042/bj3020223
  • Rébeillé F, Ravanel S, Jabrin S, Douce R, Storozhenko S, Van Der Straeten D (2006) Folates in plants: biosynthesis, distribution, and enhancement. Physiol Plant 126:330–342. https://doi.org/10.1111/j.1399-3054.2006.00587.x
  • Reina-Campos M, Diaz-Meco MT, Moscat J (2019) The complexity of the serine glycine one-carbon pathway in cancer. J Cell Biol 219:e201907022. https://doi.org/10.1083/jcb.201907022
  • Robinson SP (1982) 3-phosphoglycerate phosphatase activity in chloroplast preparations as a result of contamination by acid phosphatase. Plant Physiol 70:645–648. https://doi.org/10.1104/pp.70.3.645
  • Ros R, Cascales-Miñana B, Segura J, Anoman AD, Toujani W, Flores-Tornero M, Rosa-Tellez S, Muñoz-Bertomeu J (2013) Serine biosynthesis by photorespiratory and non-photorespiratory pathways: an interesting interplay with unknown regulatory networks. Plant Biol 15:707–712. https://doi.org/10.1111/j.1438-8677.2012.00682.x
  • Ros R, Muñoz-Bertomeu J, Krueger S (2014) Serine in plants: biosynthesis, metabolism, and functions. Trends Plant Sci 19:564–569. https://doi.org/10.1016/j.tplants.2014.06.003
  • Rosa-Téllez S, Anoman AD, Alcántara-Enguídanos A, Garza-Aguirre RA, Alseekh S, Ros R (2020) PGDH family genes differentially affect Arabidopsis tolerance to salt stress. Plant Sci 290:110284. https://doi.org/10.1016/j.plantsci.2019.110284
  • Ruszkowski M, Sekula B, Ruszkowska A, Dauter Z (2018) Chloroplastic serine hydroxymethyltransferase from Medicago truncatula: a structural characterization. Front Plant Sci 9:584. https://doi.org/10.3389/fpls.2018.00584
  • Samuilov S, Brilhaus D, Rademacher N, Flachbart S, Arab L, Alfarraj S, Kuhnert F, Kopriva S, Weber APM, Mettler-Altmann T et al (2018a) The photorespiratory BOU gene mutation alters sulfur assimilation and its crosstalk with carbon and nitrogen metabolism in Arabidopsis thaliana. Front Plant Sci 9:1709. https://doi.org/10.3389/fpls.2018.01709
  • Samuilov S, Rademacher N, Brilhaus D, Flachbart S, Arab L, Kopriva S, Weber APM, Mettler-Altmann T, Rennenberg H (2018b) Knock-down of the phosphoserine phosphatase gene effects rather N- than S-metabolism in Arabidopsis thaliana. Front Plant Sci 9:1830. https://doi.org/10.3389/fpls.2018.01830
  • Snyder FW, Tolbert NE (1974) Effect of CO2 concentration on glycine and serine formation during photorespiration. Plant Physiol 53:514–515. https://doi.org/10.1104/pp.53.3.514
  • Soundararajan P, Kim JS (2018) Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules 23:2983. https://doi.org/10.3390/molecules23112983
  • South PF, Cavanagh AP, Liu HW, Ort DR (2019) Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science 363:eaat9077. https://doi.org/10.1126/science.aat9077
  • Tabatabaie L, Klomp LW, Berger R, de Koning TJ (2010) L-serine synthesis in the central nervous system: a review on serine deficiency disorders. Mol Genet Metab 99:256–262. https://doi.org/10.1016/j.ymgme.2009.10.012
  • Tan BC, Joseph LM, Deng WT, Liu L, Li Q-B, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56. https://doi.org/10.1046/J.1365-313X.2003.01786.X
  • Timm S, Florian A, Jahnke K, Nunes-Nesi A, Fernie AR, Bauwe H (2011) The hydroxypyruvate-reducing system in arabidopsis: multiple enzymes for the same end. Plant Physiol 155:694–705. https://doi.org/10.1104/pp.110.166538
  • Timm S, Florian A, Wittmiss M, Jahnke K, Hagemann M, Fernie AR, Bauwe H (2013) Serine acts as a metabolic signal for the transcriptional control of photorespiration-related genes in Arabidopsis. Plant Physiol 162:379–389. https://doi.org/10.1104/pp.113.215970
  • Timm S, Nunes-Nesi A, Florian A, Eisenhut M, Morgenthal K, Wirtz M, Hell R, Weckwerth W, Hagemann M, Fernie AR et al (2021) Metabolite profiling in Arabidopsis thaliana with moderately impaired photorespiration reveals novel metabolic links and compensatory mechanisms of photorespiration. Metabolites 11:391. https://doi.org/10.3390/METABO11060391
  • Tolbert NE (1980) Photorespiration. In: Davies DD (ed) The biochemistry of plants. Academic Press, New York, pp 488–525
  • Toujani W, Muñoz-Bertomeu J, Flores-Tornero M, Rosa-Tellez S, Anoman AD, Alseekh S, Fernie AR, Ros R (2013) Functional characterization of the plastidial 3-phosphoglycerate dehydrogenase family in Arabidopsis. Plant Physiol 163:1164–1178. https://doi.org/10.1104/pp.113.226720
  • Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8:269–282. https://doi.org/10.1007/S11101-008-9103-7
  • Waditee R, Bhuiyan NH, Hirata E, Hibino T, Tanaka Y, Shikata M, Takabe T (2007) Metabolic engineering for betaine accumulation in microbes and plants. J Biol Chem 282:34185–34193. https://doi.org/10.1074/jbc.M704939200
  • Walker BJ, Vanloocke A, Bernacchi CJ, Ort DR (2016) The costs of photorespiration to food production now and in the future. Annu Rev Plant Biol 67:107–129. https://doi.org/10.1146/annurev-arplant-043015-111709
  • Wang Z, Wang Y, Wang Y, Li H, Wen Z, Hou X (2022) HPR1 is required for high light intensity induced photorespiration in Arabidopsis thaliana. Int J Mol Sci 23:4444. https://doi.org/10.3390/ijms23084444
  • Watanabe M, Chiba Y, Hirai MY (2021) Metabolism and regulatory functions of O-acetylserine, S-adenosylmethionine, homocysteine, and serine in plant development and environmental responses. Front Plant Sci 12:643403. https://doi.org/10.3389/fpls.2021.643403
  • Wieser H, Manderscheid R, Erbs M, Weigel H-J (2008) Effects of elevated atmospheric CO2 concentrations on the quantitative protein composition of wheat grain. J Agric Food Chem 56:6531–6535. https://doi.org/10.1021/jf8008603
  • Wulfert S, Krueger S (2018) Phosphoserine aminotransferase1 is part of the phosphorylated pathways for serine biosynthesis and essential for light and sugar-dependent growth promotion. Front Plant Sci 9:1712. https://doi.org/10.3389/fpls.2018.01712
  • Yang M, Vousden KH (2016) Serine and one-carbon metabolism in cancer. Nat Rev Cancer 16:650–662. https://doi.org/10.1038/nrc.2016.81
  • Zhang WC, Ng SC, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, En Nga M, Bhakoo KK, Jayapal SR, Nichane M, Yu Q, Ahmed DA, Tan C, Sing WP, Tam J, Thirugananam A, Noghabi MS, Pang YH, Ang HS, Mitchell W, Robson P, Kaldis P, Soo RA, Swarup S, Lim EH, Lim B (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148:259–272. https://doi.org/10.1016/J.CELL.2011.11.050
  • Zhang Q, Lee J, Pandurangan S, Clarke M, Pajak A, Marsolais F (2013) Characterization of Arabidopsis serine:glyoxylate aminotransferase, AGT1, as an asparagine aminotransferase. Phytochemistry 85:30–35. https://doi.org/10.1016/j.phytochem.2012.09.017
  • Zimmermann SE, Benstein RM, Flores-Tornero M, Blau S, Anoman AD, Rosa-Téllez S, Gerlich SC, Salem MA, Alseekh S, Kopriva S, Wewer V, Flügge UI, Jacoby RP, Fernie AR, Giavalisco P, Ros R, Krueger S (2021) The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism. Plant Physiol 186:1487–1506. https://doi.org/10.1093/PLPHYS/KIAB167