Hacia una Inteligencia Artificial Interseccional
-
1
Universitat de València
info
ISSN: 2171-6080
Year of publication: 2024
Issue Title: 20 años de la Ley Orgánica de Protección Integral contra la Violencia de Género en España: implantación, desarrollo, impacto y retos futuros
Volume: 15
Issue: 1
Pages: 137-144
Type: Article
More publications in: Investigaciones feministas
Abstract
Introduction. The rise of Artificial Intelligence systems for information processing and the empirical relevance of the intersectional approach encourages the search for a confluence point between both analysis methods. Objectives. The analytical potential offered by machine learning systems, given their high capacity for processing massive data, added to the better disposition of intersectional approaches to address social problems by focusing on the different axes of identity/oppression that vertebrate the position of people, invites us to propose a symbiosis between them until reaching an Intersectional Artificial Intelligence. Methodology. To this end, a conceptual approach to both methods is made, and the three moments in which the intersectionality of artificial intelligence systems could be tested are studied: in the configuration of the training databases, in the discovery of correlations between variables during the development of the models and, finally, in the audit phase as a category of system reliability. Results. After reviewing the doctrinal and empirical assumptions already developed, it is observed how it is possible to place at the service of society an Artificial Intelligence that, far from causing biases, contributes to the visibility of forgotten realities and discriminated groups from an Intersectional perspective. Conclusion. In a democratic society, an Intersectional Artificial Intelligence is not only possible but desirable as a tool to promote diversity and inclusion.
Bibliographic References
- Almendra, Javiera Cubillos (2015). La importancia de la interseccionalidad para la investigación feminista. Oxímora revista internacional de ética y política, 7, 119-137.
- Bilge, Sirma. (2013). Intersectionality undone: Saving intersectionality from feminist intersectionality studies. Du Bois review: Social science research on race, 10(2), 405-424.
- Buolamwini, Joy & Gebru, Timnit (2018, January). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on fairness, accountability and transparency (pp. 77-91). PMLR.
- Bryant, De'Aira & Howard, Ayanna (2019, January). A comparative analysis of emotion-detecting AI systems with respect to algorithm performance and dataset diversity. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (pp. 377-382).
- Cabrera, Ángel Alexander, et al. (2019, October). FairVis: Visual analytics for discovering intersectional bias in machine learning. In 2019 IEEE Conference on Visual Analytics Science and Technology (VAST) (pp. 46-56). IEEE.
- Casella, Marco (2015). Historia y evolución de la Inteligencia Artificial. Inteligencia Artificial, 14-21.
- Cho, Sumi, Crenshaw, Kimberlé Williams & McCall, Leslie. (2013). Toward a field of intersectionality studies: Theory, applications, and praxis. Signs: Journal of women in culture and society, 38(4), 785-810.
- Collins, Patricia Hill (2019). The difference that power makes: Intersectionality and participatory democracy. In The Palgrave handbook of intersectionality in public policy (pp. 167-192). Palgrave Macmillan, Cham.
- Cortina Orts, Adela (2019). Ética de la inteligencia artificial. In Anales de la Real Academia de Ciencias Morales y Políticas (pp. 379-394). Ministerio de Justicia.
- Costanza-Chock, Sasha. (2018). Design Justice, A.I., and Escape from the Matrix of Domination. Journal of Design and Science, 1-12.
- Crenshaw, Kimberlé (1989). Demarginalizing the intersection of race and sex: A black feminist critique of antidiscrimination doctrine, feminist theory and antiracist politics. u. Chi. Legal f., 1989(1), 139-167.
- Crenshaw, Kimberlé (1990). Mapping the margins: Intersectionality, identity politics, and violence against women of color. Stan. L. Rev., 43(6), 1241-1299.
- European Commission (2019). Women in Artificial Intelligence: mitigating gender bias. Disponible en:
- https://ec.europa.eu/jrc/communities/en/community/humaint/news/women-artificial-intelligence-mitigating-gender-bias
- Foulds, James R. et al. (2020, April). An intersectional definition of fairness. In 2020 IEEE 36th International Conference on Data Engineering (ICDE) (pp. 1918-1921). IEEE.
- Gelabert, Tomeu Sales. (2017). Repensando la interseccionalidad desde la teoría feminista. Ágora: papeles de Filosofía, 36(2), 229-256.
- Granados, José Javier Rainer y Baena, Luis Rodríguez (2019). Perspectiva histórica y evolución de la inteligencia artificial. En La inteligencia artificial, aplicada a la defensa (pp. 17-38). Instituto Español de Estudios Estratégicos.
- Grupo de Expertos de Alto Nivel sobre Inteligencia Artificial. (2019). Directrices éticas para una IA fiable. Comisión Europea, 1-53.
- Guo, Wei & Caliskan, Aylin (2021, July). Detecting emergent intersectional biases: Contextualized word embeddings contain a distribution of human-like biases. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (pp. 122-133).
- Guzmán Ordaz, Raquel y Jiménez Rodrigo, María (2015). La Interseccionalidad como Instrumento Analítico de Interpelación en la Violencia de Género. Oñati Socio-Legal Series, 5(2), 596-612.
- Hancock, Ange-Marie (2007). Intersectionality as a normative and empirical paradigm. Politics & Gender, 3(2), 248-254.
- Ireni-Saban, Liza & Sherman, Maya (2020). Incorporating Intersectionality into Ai Ethics. In Democracy and Fake News (pp. 40-52). Routledge.
- Joyce, Kelly, et al. (2021). Toward a sociology of artificial intelligence: A call for research on inequalities and structural change. Socius, 7, 2-11.
- Korot, Edward, et al. (2021). Predicting sex from retinal fundus photographs using automated deep learning. Scientific reports, 11(1), 1-8.
- La Barbera, María Caterina. (2017). Interseccionalidad. EUNOMÍA. Revista En Cultura De La Legalidad, (12), 191-198.
- MccalL, Leslie. (2005). The complexity of intersectionality. Signs: Journal of women in culture and society, 30(3), 1771-1800.
- Mackinnon, Catherine. (2013). Intersectionality as method: A note. Signs: Journal of Women in Culture and Society, 38(4), 1019-1030.
- Mestre i Mestre, Ruth. (2008). “Mujeres, Derechos y Ciudadanías”. En Mujeres, Derechos y Ciudadanías (pp. 17-44). Tirant lo Blanch.
- Mohseni, Sina, Zarei, Niloofar & Ragan, Eric D. (2021). A multidisciplinary survey and framework for design and evaluation of explainable AI systems. ACM Transactions on Interactive Intelligent Systems (TiiS), 11(3-4), 1-45.
- Nash, Jennifer C. (2008). Re-thinking intersectionality. Feminist review, 89(1), 1-15.
- Nelson, Laura K. (2021). Leveraging the alignment between machine learning and intersectionality: Using word embeddings to measure intersectional experiences of the nineteenth century US South. Poetics, 88(101539), 1-14.
- Poplin, Ryan, et al. (2018). Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering, 2(3), 158-164.
- ProPublica. (2016). Machine Bias. There’s software used across the country to predict future criminals. And it’s biased against blacks.
- https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
- Salem, Sara (2018). Intersectionality and its discontents: Intersectionality as traveling theory. European Journal of Women's Studies, 25(4), 403-418.
- SHIELDS, Stephanie A. (2008). Gender: An intersectionality perspective. Sex roles, 59(5), 301-311.
- Simó Soler, Elisa & Rosso, Paolo (2022). Inteligencia artificial y derecho: Entre el mito y la realidad. «La destrucción algorítmica de la humanidad». Diario La Ley, 9982, 1-9.
- Viveros Vigoya, Mara (2016). La interseccionalidad: una aproximación situada a la dominación. Debate feminista, 52, 1-17.
- Yuval-Davis, Nira. (2006). Intersectionality and feminist politics. European journal of women 's studies, 13(3), 193-209.