Burying the carbon to dig up the futureReviewing the role of Geography in valuing soil carbon ecosystem services
- Morgado Cerqueira, Henrique 1
- Roxo, Maria José 1
- Calvo-Cases, Adolfo 2
- 1 CICS.NOVA
-
2
Universitat de València
info
ISSN: 0211-6820, 1697-9540
Year of publication: 2024
Volume: 50
Issue: 1
Pages: 59-83
Type: Article
More publications in: Cuadernos de investigación geográfica: Geographical Research Letters
Abstract
El secuestro de carbono en el suelo puede ser un camino hacia la adaptación y mitigación del cambio climático, al mismo tiempo que puede fomentar el desarrollo socioeconómico sostenible. La aparición de los mercados de carbono del suelo, que monetizan la captura del carbono y las prácticas de gestión de la tierra, ha dado un nuevo impulso a esta área de estudio. Sin embargo, la intersección de los sistemas ambientales, sociales y económicos inherentes a los mercados de carbono del suelo introduce complejidades significativas. Para comprender el estado de la investigación y los temas predominantes en este campo, se realizó una revisión sistemática de la literatura científica, obteniendo artículos de la Web of Science y de las bases de datos de SCOPUS centrados en los mercados de carbono del suelo, publicados entre enero de 2017 y agosto de 2023. Nuestro análisis reveló tres ámbitos principales de investigación: 1) Servicios ecosistémicos del suelo (61%), estrechamente relacionados con las ciencias agrícolas y ambientales; 2) Economía ambiental (21%) que muestra el creciente enfoque en la valoración económica de los servicios de los ecosistemas desde el Acuerdo de París; y 3) Análisis exploratorios (18%) que resaltan los esfuerzos recientes en el tratamiento de la compleja red de factores ambientales, sociales, económicos, políticos y culturales. Sin embargo, estas áreas de investigación a menudo se tratan por separado, lo que refleja una desconexión más amplia entre las ciencias naturales y sociales: la Geografía, posicionada de manera única en la intersección de las ciencias naturales y sociales, podría salvar esta brecha. A través de una visión geográfica, se puede comprender mejor los impulsores que están detrás de la gestión de la tierra y de los cambios en el uso del suelo y cómo se relacionan con los indicadores ambientales y los mercados del carbono del suelo. En las ciencias sociales, los aspectos culturales que configuran las prácticas de gestión del suelo, las relaciones de los agricultores con la tierra y los mercados, y su compromiso con los mercados del carbono del suelo pueden ser examinados para predecir las acciones de mejora de los indicadores de comportamiento ambiental. Estos parámetros son altamente locales, influenciados por factores como los derechos de tenencia de la tierra, la ecología del paisaje, los entornos políticos y las dinámicas de poder. El papel de la Geografía va más allá de la mera comprensión de estos factores locales. También implica estudiar el espacio y el lugar, conceptos que son cruciales en el contexto de los mercados de carbono del suelo. En el marco de la teoría de la complejidad y la modelización espacial basada en agentes para sistemas socioecológicos, la Geografía puede proporcionar información valiosa sobre cómo interactúan e influyen entre sí diferentes entidades dentro de los mercados de carbono del suelo. En el contexto del cambio climático, los servicios de los ecosistemas del suelo y, por extensión, los mercados de carbono del suelo pueden influir en las vulnerabilidades sociales y económicas. Un estudio integrado del uso de la tierra, las prácticas de ordenación y su impacto en los servicios de los ecosistemas del suelo, utilizando enfoques cuantitativos y cualitativos, puede proporcionar información sobre el comportamiento social y las respuestas de los ecosistemas a lo largo del tiempo.
Funding information
Funders
-
Fundação para a Ciência e a Tecnologia
- 2021.04744.BD
Bibliographic References
- Aba, S.C., Ndukwe, O., Amu, C.J., Baiyeri, K.P., 2017. The role of trees and plantation agriculture in mitigating global climate change. African Journal of Food, Agriculture, Nutrition and Development 17 (4), 12691-12707. https://doi.org/10.18697/ajfand.80.15500
- Aguilera, E., Lassaletta, L., Gattinger, A., Gimeno, B.S., 2013. Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agriculture, Ecosystems and Environment 168, 25-36. https://doi.org/10.1016/j.agee.2013.02.003
- An, L., Grimm, V., Sullivan, A., Turner II, B.L., Malleson, N., Heppenstall, A., Vincenot, C., Robinson, D., Ye, X., Liu, J., Lindkvist, E., Tang, W., 2021. Challenges, tasks, and opportunities in modeling agent-based complex systems. Ecological Modelling 457. https://doi.org/10.1016/j.ecolmodel.2021.109685
- Arneth, A., Sitch, S., Pongratz, J., Stocker, B.D., Ciais, P., Poulter, B., Bayer, A.D., Bondeau, A., Calle, L., Chini, L.P., Gasser, T., Fader, M., Friedlingstein, P., Kato, E., Li, W., Lindeskog, M., Nabel, J.E.M.S., Pugh, T.A.M., Robertson, E., Viovi, N., Yue, C., Zaehle, S., 2017. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geoscience 10(2), 79-84. https://doi.org/10.1038/ngeo2882
- Auerbach, R., 2018. Sustainable food systems for Africa. Economia Agro-Alimentare 20 (3), 301-320. https://doi.org/10.3280/ECAG2018-003003
- Balume Kayani, I., Agumas, B., Musyoki, M., Nziguheba, G., Marohn, C., Benz, M., Vanlauwe, B., Cadisch, G., Rasche, F., 2021. Market access and resource endowment define the soil fertility status of smallholder farming systems of South-Kivu, DR Congo. Soil use and Management 37 (2), 353-366. https://doi.org/10.1111/sum.12691
- Banerjee, K., Mitra, A., Villasante, S., 2021. Carbon cycling in mangrove ecosystem of western Bay of Bengal (India). Sustainability 13 (12). https://doi.org/10.3390/su13126740
- Baumber, A., Metternicht, G., Cross, R., Ruoso, L.-E., Cowie, A.L., Waters, C., 2019. Promoting co-benefits of carbon farming in Oceania: Applying and adapting approaches and metrics from existing market-based schemes. Ecosystem Services 39. https://doi.org/10.1016/j.ecoser.2019.100982
- Beni, C., Neri, U., Papetti, P., Altimari, A., 2021. Natural horticultural systems in organic farming as a tool for resilience: Improvement of economic performance and prevention of soil erosion. Agroecology and Sustainable Food Systems 45 (9), 1375-1398. https://doi.org/10.1080/21683565.2021.1929657
- Berazneva, J., Conrad, J. M., Güereña, D.T., Lehmann, J., Woolf, D, 2019. Agricultural Productivity and Soil Carbon Dynamics: A Bioeconomic Model. American Journal of Agricultural Economics 101 (4), 1021-1046. https://doi.org/10.1093/ajae/aaz014
- Bhattacharyya, S.S., Leite, F.F.G.D., Adeyemi, M.A., Sarker, A.J., Cambareri, G.S., Faverin, C., Tieri, M.P., Castillo-Zacarias, C., Melchor-Martinez, E.M., Iqbal, H M.N., Parra-Saldivar, R., 2021. A paradigm shift to CO2 sequestration to manage global warming—With the emphasis on developing countries. Science of the Total Environment 790. https://doi.org/10.1016/j.scitotenv.2021.148169
- Biggs, N.B., Hafner, J., Mashiri, F.E., Huntsinger, L., Lambin, E.F., 2021. Payments for ecosystem services within the hybrid governance model: Evaluating policy alignment and complementarity on California rangelands. Ecology and Society 26 (1). https://doi.org/10.5751/ES-12254-260119
- Black, H.I.J., Reed, M S., Kendall, H., Parkhurst, R., Cannon, N., Chapman, P.J., Orman, M., Phelps, J., Rudman, H., Whalley, S., Yeluripati, J., Ziv, G., 2022. What makes an operational farm soil carbon code? Insights from a global comparison of existing soil carbon codes using a structured analytical framework. Carbon Management 13 (1), 554-580. https://doi.org/10.1080/17583004.2022.2135459
- Blackburn, J., Mooiweer, H., Parks, M., Hutson, A., 2018. The Soil Value Exchange: Unlocking nature’s value via the market. Bulletin of the Atomic Scientists 74 (3), 62-169). https://doi.org/10.1080/00963402.2018.1461974
- Bouzouidja, R., Bechet, B., Hanzlikova, J., Snehota, M., Le Guern, C., Capiaux, H., Jean-Soro, L., Claverie, R., Joimel, S., Schwartz, C., Guenon, R., Szkordilisz, F., Kormondi, B., Musy, M., Cannavo, P., Lebeau, T., 2021. Simplified performance assessment methodology for addressing soil quality of nature-based solutions. Journal of Soils and Sediments 21 (5) 1909-1927. https://doi.org/10.1007/s11368-020-02731-y
- Brancalion, P.H.S., Guillemot, J., César, R.G., Andrade, H.S., Mendes, A., Sorrini, T. B., Piccolo, M. D.C., Peluci, M.C., Moreno, V.D.S., Colletta, G., Chazdon, R.L. 2021. The cost of restoring carbon stocks in Brazil’s Atlantic Forest. Land Degradation and Development 32 (2), 830-841. https://doi.org/10.1002/ldr.3764
- Brill, S., 2021. A story of its own: Creating singular gift-commodities for voluntary carbon markets. Journal of Cultural Economy 14 (3), 332-343. https://doi.org/10.1080/17530350.2020.1864448
- Bristow, M., Hutley, L.B., Beringer, J., Livesley, S.J., Edwards, A C., Arndt, S.K., 2016. Quantifying the relative importance of greenhouse gas emissions from current and future savanna land use change across northern Australia. Biogeosciences 13(22), 6285-6303. https://doi.org/10.5194/bg-13-6285-2016
- Camarena, S., 2021. Engaging with Artificial Intelligence (AI) with a Bottom-Up Approach for the Purpose of Sustainability: Victorian Farmers Market Association, Melbourne Australia. Sustainability 13 (16). https://doi.org/10.3390/su13169314
- Carlos Alias, J., Antonio Mejias, J., Chaves, N., 2022. Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain. Land 11 (3). https://doi.org/10.3390/land11030425
- Cerqueira, H., 2021. Sequestro de Carbono no Solo: Mitigação das Alterações Climáticas em Ecossistemas Mediterrâneos [Universidade Nova de Lisboa - Faculdade de Ciências Sociais e Humanas]. https://doi.org/10.13140/RG.2.2.24240.28167
- Chen, Y., Kou, W., Ma, X., Wei, X., Gong, M., Yin, X., Li, J., Li, J., 2022. Estimation of the Value of Forest Ecosystem Services in Pudacuo National Park, China. Sustainability 14 (17). https://doi.org/10.3390/su141710550
- Chizmar, S.J., Parajuli, R., Bardon, R., Cubbage, F., 2021. State Cost-Share Programs for Forest Landowners in the Southern United States: A Review. Journal of Forestry 119 (2), 177-195. https://doi.org/10.1093/jofore/fvaa054
- Chopin, P., Sierra, J., 2021. Potential and constraints for applying the “4 per 1000 Initiative” in the Caribbean: The case of Guadeloupe. Regional Environmental Change 21 (1). https://doi.org/10.1007/s10113-020-01740-4
- Contasti, A.L., Firth, A.G., Baker, B.H., Brooks, J.P., Locke, M.A., Morin, D.J., 2023. Balancing Tradeoffs in Climate-Smart Agriculture: Will Selling Carbon Credits Offset Potential Losses in the Net Yield Income of Small-Scale Soybean (Glycine max L.) Producers in the Mid-Southern United States? Decision Analysis. Informs. https://doi.org/10.1287/deca.2023.0478
- Correia, P. J., Pestana, M., 2018. Exploratory analysis of the productivity of carob tree (Ceratonia siliqua) orchards conducted under dry-farming conditions. Sustainability 10 (7). https://doi.org/10.3390/su10072250
- Costantini, E.A.C., Antichi, D., Almagro, M., Hedlund, K., Sarno, G., Virto, I., 2020. Local adaptation strategies to increase or maintain soil organic carbon content under arable farming in Europe: Inspirational ideas for setting operational groups within the European innovation partnership. Journal of Rural Studies 79, 102-115. https://doi.org/10.1016/j.jrurstud.2020.08.005
- Davis, B.A., 2023. A climate solution on shaky ground: the voluntary carbon market and agricultural sequestration. University of Illinois Law Review 3, 955-990.
- De Leijster, V., Verburg, R.W., Santos, M.J., Wassen, M.J., Martinez-Mena, M., de Vente, J., Verweij, P.A., 2020. Almond farm profitability under agroecological management in southeastern Spain: Accounting for externalities and opportunity costs. Agricultural Systems 183. https://doi.org/10.1016/j.agsy.2020.102878
- Drews, M., Larsen, M.A.D., Balderrama, J.G.P., 2020. Projected water usage and land-use-change emissions from biomass production (2015-2050). Energy Strategy Reviews 29, 100487. https://doi.org/10.1016/j.esr.2020.100487
- Duncan, C., Primavera, J.H., Hill, N.A.O., Wodehouse, D.C.J., Koldewey, H.J., 2022. Potential for Return on Investment in Rehabilitation-Oriented Blue Carbon Projects: Accounting Methodologies and Project Strategies. Frontiers in Forests and Global Change 4. https://doi.org/10.3389/ffgc.2021.775341
- Dybala, K.E., Steger, K., Walsh, R.G., Smart, D.R., Gardali, T., Seavy, N.E., 2019. Optimizing carbon storage and biodiversity co-benefits in reforested riparian zones. Journal of Applied Ecology 56 (2), 343-353. https://doi.org/10.1111/1365-2664.13272
- Englund, O., Dimitriou, I., Dale, V.H., Kline, K.L., Mola-Yudego, B., Murphy, F., English, B., McGrath, J., Busch, G., Negri, M.C., Brown, M., Goss, K., Jackson, S., Parish, E., Cacho, J., Zumpf, C., Quinn, J., Mishra, S.K., 2020. Multifunctional perennial production systems for bioenergy: Performance and progress. Energy and Environment 9 (5). https://doi.org/10.1002/wene.375
- Fargione, J.E., Bassett, S., Boucher, T., Bridgham, S.D., Conant, R.T., Cook-Patton, S.C., Ellis, P.W., Falcucci, A., Fourqurean, J.W., Gopalakrishna, T., Gu, H., Henderson, B., Hurteau, M.D., Kroeger, K.D., Kroeger, T., Lark, T.J., Leavitt, S.M., Lomax, G., McDonald, R.,I., … Griscom, B.W., 2018. Natural climate solutions for the United States. Science Advances 4 (11). https://doi.org/10.1126/sciadv.aat1869
- Fearnehough, H., Kachi, A., Mooldijk, S., Warnecke, C., Schneider, L., 2020. Future role for voluntary carbon markets in the Paris era - Final Report (p. 94). https://www.dehst.de/SharedDocs/news/EN/future-role-for-voluntary-carbon-markets.html
- Feliciano, D., 2022. Factors influencing the adoption of sustainable agricultural practices: The case of seven horticultural farms in the United Kingdom. Scottish Geographical Journal 138 (3-4), 291-320). https://doi.org/10.1080/14702541.2022.2151041
- Felton, M., Jones, P., Tranter, R., Clark, J., Quaife, T., Lukac, M., 2023. Farmers’ attitudes towards, and intentions to adopt, agroforestry on farms in lowland South-East and East England. Land Use Policy 131. https://doi.org/10.1016/j.landusepol.2023.106668
- Fleischman, F., Basant, S., Chhatre, A., Coleman, E.A., Fischer, H.W., Gupta, D., Güneralp, B., Kashwan, P., Khatri, D., Muscarella, R., Powers, J.S., Ramprasad, V., Rana, P., Solorzano, C.R., Veldman, J.W., 2020. Pitfalls of Tree Planting Show Why We Need People-Centered Natural Climate Solutions. BioScience 70 (11), 947-950. https://doi.org/10.1093/biosci/biaa094
- Franceschinis, C., Liebe, U., Thiene, M., Meyerhoff, J., Field, D., McBratney, A., 2022. The effect of social and personal norms on stated preferences for multiple soil functions: Evidence from Australia and Italy. Australian of Agricultural and Resource Economics 66 (2), 335-362. https://doi.org/10.1111/1467-8489.12466
- Geng, J., Liang, C., 2021. Analysis of the internal relationship between ecological value and economic value based on the forest resources in China. Sustainability 13 (12). https://doi.org/10.3390/su13126795
- Gomes, E., Abrantes, P., Banos, A., Rocha, J., Buxton, M., 2019. Farming under urban pressure: Farmers’ land use and land cover change intentions. Applied Geography 102, 58-70. https://doi.org/10.1016/j.apgeog.2018.12.009
- Gotts, N.M., van Voorn, G.A.K., Polhill, J.G., Jong, E. de, Edmonds, B., Hofstede, G.J., Meyer, R., 2019. Agent-based modelling of socio-ecological systems: Models, projects and ontologies. Ecological Complexity 40. https://doi.org/10.1016/j.ecocom.2018.07.007
- Gramig, B.M., Widmar, N.J.O., 2018. Farmer preferences for agricultural soil carbon sequestration schemes. Applied Economic Perspectives and Policy 40 (3), 502-521. https://doi.org/10.1093/aepp/ppx041
- Groshans, G.R., Mikhailova, E.A., Post, C.J., Schlautman, M.A., Zurqani, H.A., Zhang, L., 2018. Assessing the Value of Soil Inorganic Carbon for Ecosystem Services in the Contiguous United States Based on Liming Replacement Costs. Land 7 (4). https://doi.org/10.3390/land7040149
- Hermann, D., Sauthoff, S., Musshoff, O., 2017. Ex-ante evaluation of policy measures to enhance carbon sequestration in agricultural soils. Ecological Economics 140, 241-250. https://doi.org/10.1016/j.ecolecon.2017.05.018
- Hutchison, L.M., Pollack, J.B., Swanson, K., Yoskowitz, D., 2018. Operationalizing Blue Carbon in the Mission-Aransas National Estuarine Research Reserve, Texas. Coastal Management 46 (4), 278-296. https://doi.org/10.1080/08920753.2018.1474068
- IATP, 2020. Why Carbon Markets Won’t work for Agriculture. https://www.iatp.org/documents/why-carbon-markets-wont-work-agriculture
- IPCC, 2014. Climate change 2014 - Mitigation of climate change. In O. Edenhofer, R. Pichs-Madruga, E. F. Y. Sokona, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, J.C. Minx (Eds.). Climate Change 2014 Mitigation of Climate Change. Cambridge University Press. https://doi.org/10.1017/CBO9780511546013
- Jacobs, H., Gupta, A., Möller, I., 2023. Governing-by-aspiration? Assessing the nature and implications of including negative emission technologies (NETs) in country long-term climate strategies. Global Environmental Change, 81. https://doi.org/10.1016/j.gloenvcha.2023.102691
- Jafarzadeh, A.A., Mahdavi, A., Shamsi, S.R.F., Yousefpour, R., 2021. Assessing synergies and trade-offs between ecosystem services in forest landscape management. Land Use Policy, 111. https://doi.org/10.1016/j.landusepol.2021.105741
- Jin, E., Sutherland, J.W., 2018. An integrated sustainability model for a bioenergy system: Forest residues for electricity generation. Biomass & Bioenergy 119, 10-21. https://doi.org/10.1016/j.biombioe.2018.09.005
- Johansson, E.L., Brogaard, S., Brodin, L., 2022. Envisioning sustainable carbon sequestration in Swedish farmland. Environmental Science and Policy 135, 16-25. https://doi.org/10.1016/j.envsci.2022.04.005
- Kallio, G., LaFleur, W., 2023. Ways of (un)knowing landscapes: Tracing more-than-human relations in regenerative agriculture. Journal of Rural Studies 101. https://doi.org/10.1016/j.jrurstud.2023.103059
- Kay, S., Graves, A., Palma, J. H. N., Moreno, G., Roces-Díaz, J V., Aviron, S., Chouvardas, D., Crous-Duran, J., Ferreiro-Domínguez, N., García de Jalón, S., Măcicăşan, V., Mosquera-Losada, M.R., Pantera, A., Santiago-Freijanes, J.J., Szerencsits, E., Torralba, M., Burgess, P.J., Herzog, F., 2019. Agroforestry is paying off – Economic evaluation of ecosystem services in European landscapes with and without agroforestry systems. Ecosystem Services 36. https://doi.org/10.1016/j.ecoser.2019.100896
- Keenor, S.G., Rodrigues, A.F., Mao, L., Latawiec, A.E., Harwood, A.R., Reid, B.J., 2021. Capturing a soil carbon economy. Royal Society Open Science 8 (4), 202305. https://doi.org/10.1098/rsos.202305
- Kirkby, M., 2021. Desertification and development: Some broader contexts. Journal of Arid Environments 193. https://doi.org/10.1016/j.jaridenv.2021.104575
- Kitaibekova, S., Toktassynov, Z., Sarsekova, D., Mohammadi Limaei, S., Zhilkibayeva, E., 2023. Assessment of Forest Ecosystem Services in Burabay National Park, Kazakhstan: A Case Study. Sustainability 15, (5). https://doi.org/10.3390/su15054123
- Lal, R., 2004. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 304, 1623-1627.
- Lal, R., 2010. Beyond Copenhagen: Mitigating climate change and achieving food security through soil carbon sequestration. Food Security 2(2), 169-177. https://doi.org/10.1007/s12571-010-0060-9
- Lal, R., 2020. The role of industry and the private sector in promoting the “4 per 1000” initiative and other negative emission technologies. Geoderma 378. https://doi.org/10.1016/j.geoderma.2020.114613
- Lal, R., Ussiri, D., 2017. Carbon Sequestration for Climate Change Mitigation and Adaptation. Springer. https://doi.org/10.1007/978-3-319-53845-7
- Le, N.N., Pham, T.D., Yokoya, N., Ha, N.T., Nguyen, T.T.T., Tran, T.D.T., Pham, T.D., 2021. Learning from multimodal and multisensor earth observation dataset for improving estimates of mangrove soil organic carbon in Vietnam. International Journal of Remote Sensing 42 (18), 6866-6890. https://doi.org/10.1080/01431161.2021.1945158
- Li, Z., Qi, Z., Jiang, Q., Sima, N., 2021. An economic analysis software for evaluating best management practices to mitigate greenhouse gas emissions from cropland. Agricultural Systems 186, 102950. https://doi.org/10.1016/j.agsy.2020.102950
- Liu, Y., Bi, Y., Xie, Y., Zhao, X., He, D., Wang, S., Wang, C., Guo, T., Xing, G., 2020. Successive straw biochar amendments reduce nitrous oxide emissions but do not improve the net ecosystem economic benefit in an alkaline sandy loam under a wheat-maize cropping system. Land Degradation and Development 31 (7), 868-883. https://doi.org/10.1002/ldr.3495
- Lobell, D.B., Baldos, U.L.C., Hertel, T. W., 2013. Climate adaptation as mitigation: The case of agricultural investments. Environmental Research Letters 8(1), 12. https://doi.org/10.1088/1748-9326/8/1/015012
- Lopes, F., Amaral, B., 2021. O valor do recreio florestal nos parques florestais Açorianos; [The value of forest recreation in Azorean public parks]. Revista de Economia e Sociologia Rural 59 (1), 1-10. https://doi.org/10.1590/1806-9479.2021.238884
- Lundholm, A., Black, K., Corrigan, E., Nieuwenhuis, M., 2020. Evaluating the Impact of Future Global Climate Change and Bioeconomy Scenarios on Ecosystem Services Using a Strategic Forest Management Decision Support System. Frontiers in Ecology and Evolution 8, 200. https://doi.org/10.3389/fevo.2020.00200
- Marks, A. B., 2020. (Carbon) farming our way out of climate change. Denver Law Review 97 (3), 497-556.
- Michaelowa, A., Hermwille, L., Obergassel, W., Butzengeiger, S., 2019. Additionality revisited: guarding the integrity of market mechanisms under the Paris Agreement. Climate Policy 3062. https://doi.org/10.1080/14693062.2019.1628695
- Molajou, A., Pouladi, P., Afshar, A., 2021. Incorporating Social System into Water-Food-Energy Nexus. Water Resources Management 35 (13), 4561-4580. https://doi.org/10.1007/s11269-021-02967-4
- Moran-Rodas, V.E., Preusse, V., Wachendorf, C., 2022. Agricultural Management Practices and Decision-Making in View of Soil Organic Matter in the Urbanizing Region of Bangalore. Sustainability 14 (10). https://doi.org/10.3390/su14105775
- Mouratiadou, I., Stella, T., Gaiser, T., Wicke, B., Nendel, C., Ewert, F., Hilst, F., 2019. Sustainable intensification of crop residue exploitation for bioenergy: Opportunities and challenges. GCB Bioenergy 12(1), 71-89. https://doi.org/10.1111/gcbb.12649
- Nunes, S., Gastauer, M., Cavalcante, R.B.L., Ramos, S.J., Caldeira Jr, C.F., Silva, D., Rodrigues, R.R., Salomao, R., Oliveira, M., Souza-Filho, P.W.M., Siqueira, J.O., 2020. Challenges and opportunities for large-scale reforestation in the Eastern Amazon using native species. Forest Ecology and Management 466. https://doi.org/10.1016/j.foreco.2020.118120
- Odote, C., 2019. Implications of the Ecosystem-Based Approach to Wetlands Management on the Kenyan Coast. Publications on Ocean Development 87, 413-442). https://doi.org/10.1163/9789004389984_014
- O’Sullivan, L., Wall, D., Creamer, R., Bampa, F., Schulte, R.P.O., 2018. Functional Land Management: Bridging the Think-Do-Gap using a multi-stakeholder science policy interface. Ambio 47 (2), 216-230. https://doi.org/10.1007/s13280-017-0983-x
- Otte, P.P., Vik, J., 2017. Biochar systems: Developing a socio-technical system framework for biochar production in Norway. Technology in Society 51, 34-45. https://doi.org/10.1016/j.techsoc.2017.07.004
- Parish, E.S., Karlen, D.L., Kline, K.L., Comer, K.S., Belden, W.W., 2023. Designing Iowa Agricultural Landscapes to Improve Environmental Co-Benefits of Bioenergy Production. Sustainability 15 (13). https://doi.org/10.3390/su151310051
- Parron, L.M., Villanueva, A.J., Glenk, K., 2022. Estimating the value of ecosystem services in agricultural landscapes amid intensification pressures: The Brazilian case. Ecosystem Services 57. https://doi.org/10.1016/j.ecoser.2022.101476
- Partey, S.T., Zougmore, R.B., Ouedraogo, M., Thevathasan, N.V., 2017. Why Promote Improved Fallows as a Climate-Smart Agroforestry Technology in Sub-Saharan Africa? Sustainability 9 (11). https://doi.org/10.3390/su9111887
- Pellerin, S., Bamière, L., Angers, D., Béline, F., Benoit, M., Butault, J.P., Chenu, C., Colnenne-David, C., Cara, S.D., Delame, N., Doreau, M., Dupraz, P., Faverdin, P., Garcia-Launay, F., Hassouna, M., Hénault, C., Jeuffroy, M.-H., Klumpp, K., Metay, A., … Chemineau, P., 2017. Identifying cost-competitive greenhouse gas mitigation potential of French agriculture. Environmental Science & Policy 77, 130-139. https://doi.org/10.1016/j.envsci.2017.08.003
- Persiani, A., Diacono, M., Montemurro, F., 2023. Agroecological practices in organic fennel cultivation to improve environmental sustainability. Agroecology and Sustainable Food Systems 47 (5), 668-686. https://doi.org/10.1080/21683565.2023.2180699
- Priori, S., Barbetti, R., Meini, L., Morelli, A., Zampolli, A., D’Avino, L., 2019. Towards economic land evaluation at the farm scale based on soil physical-hydrological features and ecosystem services. Water 11 (8). https://doi.org/10.3390/w11081527
- Rodrigues, S., Horan, E., 2018. The Role of Biochar in Sustainable Agriculture, and Climate Change Mitigation for Sustainable Cities. World Sustainability Series, pp. 437-447. https://doi.org/10.1007/978-3-319-73293-0_25
- Roy, O., Meena, R.S., Kumar, S., Jhariya, M.K., Pradhan, G., 2022. Assessment of land use systems for CO2 sequestration, carbon credit potential, and income security in Vindhyan region, India. Land Degradation and Development 33 (4), 670-682. https://doi.org/10.1002/ldr.4181
- Rudolf, K., Hennings, N., Dippold, M.A., Edison, E., Wollni, M., 2021. Improving economic and environmental outcomes in oil palm smallholdings: The relationship between mulching, soil properties and yields. Agricultural Systems 193. https://doi.org/10.1016/j.agsy.2021.103242
- Rumpel, C., Amiraslani, F., Chenu, C., Garcia Cardenas, M., Kaonga, M., Koutika, L.S., Ladha, J., Madari, B., Shirato, Y., Smith, P., Soudi, B., Soussana, J.F., Whitehead, D., Wollenberg, E., Cardenas, M.G., Kaonga, M., Koutika, L.S., Ladha, J., Madari, B., …Wollenberg, E., 2020. The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio 49 (1), 350-360. https://doi.org/10.1007/s13280-019-01165-2
- Russell-Smith, J., Sangha, K.K., 2018. Emerging opportunities for developing a diversified land sector economy in Australia’s northern savannas. The Rangeland Journal 40 (4), 315. https://doi.org/10.1071/RJ18005
- Ryschawy, J., Tiffany, S., Gaudin, A., Niles, M.T., Garrett, R.D., 2021. Moving niche agroecological initiatives to the mainstream: A case-study of sheep-vineyard integration in California. Land Use Policy 109. https://doi.org/10.1016/j.landusepol.2021.105680
- Salvati, L., Mavrakis, A., Colantoni, A., Mancino, G., Ferrara, A., 2015. Complex Adaptive Systems, soil degradation and land sensitivity to desertification: A multivariate assessment of Italian agro-forest landscape. Science of the Total Environment 521-522 (1), 235-245. https://doi.org/10.1016/j.scitotenv.2015.03.094
- Santos, M.P., Morais, T. G., Domingos, T., Teixeira, R. F. M., 2022. Valuing Ecosystem Services Provided by Pasture-Based Beef Farms in Alentejo, Portugal. Land 11(12). https://doi.org/10.3390/land11122238
- Santos, R., Roxo, M.J., 2017. Um conto de duas tragédias: O Baldio da Serra de Mértola no Alentejo (sul de Portugal) e a sua privatização , séculos XVIII a XX. In M. Motta, M. Piccolo (Eds.), Domínio de Outrém Volume 1 - Posse e Propriedade na Era Moderna (Portugal e Brasil), Vol. 1, pp. 30-66). Nósporcátudobem. http://hdl.handle.net/10316/86926
- Sanz-Cobena, A., Lassaletta, L., Aguilera, E., Prado, A. del, Garnier, J., Billen, G., Iglesias, A., Sánchez, B., Guardia, G., Abalos, D., Plaza-Bonilla, D., Puigdueta-Bartolomé, I., Moral, R., Galán, E., Arriaga, H., Merino, P., Infante-Amate, J., Meijide, A., Pardo, G., … Smith, P., 2017. Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agriculture, Ecosystems and Environment 238, 5-24. https://doi.org/10.1016/j.agee.2016.09.038
- Scharlemann, J.P.W., Tanner, E.V.J., Hiederer, R., Kapos, V., 2014. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management 5 (1), 81-91. https://doi.org/10.4155/cmt.13.77
- Sharma, M., Kaushal, R., Kaushik, P., Ramakrishna, S., 2021. Carbon farming: Prospects and challenges. Sustainability 13 (19). https://doi.org/10.3390/su131911122
- Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., Diemen, R. van, Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Pereira, J.P., Vyas, P., Huntley, E., … Malley, J., 2019. Climate Change and Land: an IPCC special report. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, 1-864. https://www.ipcc.ch/srccl/
- Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G., Korotkov, V., Le Hoang, A., Lwasa, S., McElwee, P., Nkonya, E., Saigusa, N., Soussana, J. F., Taboada, M.A., Manning, F.C., Nampanzira, D., Arias-Navarro, C., Vizzarri, M., House, J., … Arneth, A., 2020. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Global Change Biology 26(3), 1532-1575. https://doi.org/10.1111/gcb.14878
- Sollen-Norrlin, M., Ghaley, B.B., Rintoul, N.L.J., 2020. Agroforestry Benefits and Challenges for Adoption in Europe and Beyond. Sustainability 12 (17). https://doi.org/10.3390/su12177001
- Sun, W., Xu, C., 2021. Carbon price prediction based on modified wavelet least square support vector machine. Science of The Total Environment 754, 142052. https://doi.org/10.1016/j.scitotenv.2020.142052
- Torvanger, A., 2019. Governance of bioenergy with carbon capture and storage (BECCS): Accounting, rewarding, and the Paris agreement. Climate Policy 19 (3), 329-341. https://doi.org/10.1080/14693062.2018.1509044
- Tuan, Y.F., 1977. Space and Place: The Perspective of Experience (8th Edition). University of Minnesota Press.
- Tubiello, F., 2012. Climate Change Adaptation and Mitigation - Challenges and Opportunities for the Food Sector. FAO. http://www.fao.org/docrep/016/i2855e/i2855e.pdf
- Venmans, F., Ellis, J., Nachtigall, D., 2020. Carbon pricing and competitiveness: are they at odds? Climate Policy 20 (9), 1070-1091. https://doi.org/10.1080/14693062.2020.1805291
- Von Cossel, M., Winkler, B., Mangold, A., Lask, J., Wagner, M., Lewandowski, I., Elbersen, B., van Eupen, M., Mantel, S., Kiesel, A., 2020. Bridging the Gap Between Biofuels and Biodiversity Through Monetizing Environmental Services of Miscanthus Cultivation. Earth Future 8(10). https://doi.org/10.1029/2020EF001478
- Wilkes, A., Wang, S., Lipper, L., Chang, X., 2021. Market Costs and Financing Options for Grassland Carbon Sequestration: Empirical and Modelling Evidence from Qinghai, China. Frontiers in Environmental Science 9. https://doi.org/10.3389/fenvs.2021.657608
- Wu, J., Wang, M., Wang, T., Fu, X., 2022. Evaluation of Ecological Service Function of Liquidambar formosana Plantations. International Journal of Environmental Research and Public Health 19 (22). https://doi.org/10.3390/ijerph192215317
- Yang, Y., Hobbie, S.E., Hernandez, R.R., Fargione, J., Grodsky, S.M., Tilman, D., Zhu, Y.-G., Luo, Y., Smith, T.M., Jungers, J.M., Yang, M., Chen, W.Q., 2020. Restoring Abandoned Farmland to Mitigate Climate Change on a Full Earth. One Earth 3 (2) 176-186). https://doi.org/10.1016/j.oneear.2020.07.019
- Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L. V., 2017. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Scientific Reports 7 (1), 1-8. https://doi.org/10.1038/s41598-017-15794-8