Few-mode transmission technology for ultra-high capacity optical networks
- Roberto Llorente Sáez Doktorvater/Doktormutter
- Juan Luís Corral González Doktorvater/Doktormutter
Universität der Verteidigung: Universitat Politècnica de València
Fecha de defensa: 17 von Dezember von 2018
- Pablo Sanchis Kilders Präsident/in
- Robert Halir Sekretär/in
- Isaac Suárez Álvarez Vocal
Art: Dissertation
Zusammenfassung
In this Ph.D. thesis, different mode coupling and mode conversion techniques with the aim to increase the transport capacity in telecommunications systems over optical fiber are proposed. Concretely, the main aim is the development of the technology to achieve MDM using a limited controlled number of modes. Two different MDM scenarios based on two distinct wavelengths have been considered. On one hand, using the 850 nm wavelength over SSMF favors the use of optical and electro-optical devices with costs much lower than their equivalent in the C+L band. This novel transmission technology enables a new generation of very high capacity optical interconnections applicable to chip-to-chip links, to optical backplanes, and also to high-performance computing clusters and network switching centre interconnections. On the other hand, using the 1550 nm wavelength over optical waveguides based on SOI, i.e., Si (Silicon) above SiO2 substrate (silicon oxide), allows the use of integrated devices offering a less size, better repeatability and robustness in comparison with the optical fiber devices. Fused fiber couplers are proposed as key elements to (de)multiplex different fiber modes in a MDM link at 850 nm. The use of a symmetric directional coupler (DC) as a (de)multiplexer requires the use of an additional mode converter. The use of an asymmetrical directional coupler (ADC) as optical (de)multiplexer and mode converter is proposed, avoiding the necessity of an additional mode converter and simplifying the MDM scheme. Furthermore, in this Ph.D. thesis it is also proposed and evaluated the design of a mechanical mode converter at 850 nm using a SSMF. This technique permits to obtain the first high order mode with high quality and without the necessity of using an ADC. After that, it is analyzed and investigated the employment of commercial optical couplers (designed at 1550 nm) at 850 nm wavelength operation, thus avoiding the use of optical couplers and mode converters specifically designed at 850 nm wavelength. The MDM system costs are reduced as fewer devices are required and commercial components designed at 1550 nm are cheaper than the counterparts at 850 nm. In this Ph.D. thesis it is also considered the employment of ADCs over strip waveguides based on SOI technology for the conversion and multiplexing of the optical modes, from single-mode waveguide to high order mode waveguide at the 1550 nm wavelength. Thus, it has been studied and experimentally investigated different designs aimed to achieve the most robust configuration, in which the yield is less affected by the fabrication tolerances. Furthermore, the use of DCs over ridge waveguides is commonly employed and it offers better performance than strip waveguides. For this reason, the Ph.D. thesis studies and evaluates the use of ADCs with ridge waveguides by considering the effective refractive indexes of the even and odd supermodes analysis. In this way, a comparison between strip and ridge structures is done in order to find the optimum design that offer the best features. Finally, it is analyzed the design of a grating coupler capable of multiplexing and demultiplexing the fundamental and the high order mode from the waveguide to the optical fiber and vice versa. Thus, different designs are evaluated in order to achieve a design more robust and efficient to the coupling misalignments.